@@ -10,7 +10,7 @@ ms.service: azure-machine-learning
10
10
ms.subservice : automl
11
11
ms.custom : devx-track-azurecli, update-code, devx-track-python
12
12
ms.topic : how-to
13
- ms.date : 11/07/2023
13
+ ms.date : 01/20/2025
14
14
# Customer intent: I'm a data scientist with ML knowledge in the computer vision space, looking to build ML models using image data in Azure Machine Learning with full control of the model architecture, hyperparameters, and training and deployment environments.
15
15
---
16
16
@@ -367,7 +367,7 @@ Image classification<br> (multi-class and multi-label)| **MobileNet**: Light-wei
367
367
Object detection | ** YOLOv5** : One stage object detection model < br> ** Faster RCNN ResNet FPN ** : Two stage object detection models < br> ** RetinaNet ResNet FPN ** : address class imbalance with Focal Loss < br> < br> * Note: Refer to [`model_size` hyperparameter](reference- automl- images- hyperparameters.md# model-specific-hyperparameters) for YOLOv5 model sizes.*| ***`yolov5`\**** <br> `fasterrcnn_resnet18_fpn` <br> `fasterrcnn_resnet34_fpn` <br> `fasterrcnn_resnet50_fpn` <br> `fasterrcnn_resnet101_fpn` <br> `fasterrcnn_resnet152_fpn` <br> `retinanet_resnet50_fpn`
368
368
Instance segmentation | ** MaskRCNN ResNet FPN ** | `maskrcnn_resnet18_fpn` < br> `maskrcnn_resnet34_fpn` < br> *** `maskrcnn_resnet50_fpn` \**** <br> `maskrcnn_resnet101_fpn` <br> `maskrcnn_resnet152_fpn`
369
369
370
- # ### Supported model architectures - HuggingFace and MMDetection (preview)
370
+ # ### Supported model architectures - HuggingFace and MMDetection
371
371
372
372
With the new backend that runs on [Azure Machine Learning pipelines](concept- ml- pipelines.md), you can additionally use any image classification model from the [HuggingFace Hub](https:// huggingface.co/ models? pipeline_tag = image- classification& library = transformers) which is part of the transformers library (such as microsoft/ beit- base- patch16- 224 ), as well as any object detection or instance segmentation model from the [MMDetection Version 3.1 .0 Model Zoo](https:// mmdetection.readthedocs.io/ en/ v3.1.0/ model_zoo.html) (such as `atss_r50_fpn_1x_coco` ).
373
373
@@ -376,8 +376,8 @@ In addition to supporting any model from HuggingFace Transfomers and MMDetection
376
376
Task | model architectures | String literal syntax
377
377
-- - | ---------- | ----------
378
378
Image classification< br> (multi- class and multi- label)| ** BEiT** < br> ** ViT** < br> ** DeiT** < br> ** SwinV2** | [`microsoft/ beit- base- patch16- 224 - pt22k- ft22k` ](https:// ml.azure.com/ registries/ azureml/ models/ microsoft- beit- base- patch16- 224 - pt22k- ft22k/ version/ 5 )< br> [`google/ vit- base- patch16- 224 ` ](https:// ml.azure.com/ registries/ azureml/ models/ google- vit- base- patch16- 224 / version/ 5 )< br> [`facebook/ deit- base- patch16- 224 ` ](https:// ml.azure.com/ registries/ azureml/ models/ facebook- deit- base- patch16- 224 / version/ 5 )< br> [`microsoft/ swinv2- base- patch4- window12- 192 - 22k ` ](https:// ml.azure.com/ registries/ azureml/ models/ microsoft- swinv2- base- patch4- window12- 192 - 22k / version/ 5 )
379
- Object Detection | **Sparse R-CNN** <br> **Deformable DETR** <br> **VFNet** <br> **YOLOF** <br> **Swin** | [`mmd-3x-sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco/version/8)<br> [`mmd-3x-sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco/version/8) <br> [`mmd-3x-deformable-detr_refine_twostage_r50_16xb2-50e_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-deformable-detr_refine_twostage_r50_16xb2-50e_coco/version/8) <br> [`mmd-3x-vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco/version/8) <br> [`mmd-3x-vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco/version/8) <br> [`mmd-3x-yolof_r50_c5_8x8_1x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-yolof_r50_c5_8x8_1x_coco/version/8)
380
- Instance Segmentation | ** Swin ** | [`mmd- 3x - mask- rcnn_swin- t- p4- w7_fpn_1x_coco` ](https:// ml.azure.com/ registries/ azureml/ models/ mmd- 3x - mask- rcnn_swin- t- p4- w7_fpn_1x_coco/ version/ 8 )
379
+ Object Detection | **Sparse R-CNN** <br> **Deformable DETR** <br> **VFNet** <br> **YOLOF** | [`mmd-3x-sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco/version/8)<br> [`mmd-3x-sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco/version/8) <br> [`mmd-3x-deformable-detr_refine_twostage_r50_16xb2-50e_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-deformable-detr_refine_twostage_r50_16xb2-50e_coco/version/8) <br> [`mmd-3x-vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco/version/8) <br> [`mmd-3x-vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco/version/8) <br> [`mmd-3x-yolof_r50_c5_8x8_1x_coco`](https://ml.azure.com/registries/azureml/models/mmd-3x-yolof_r50_c5_8x8_1x_coco/version/8)
380
+ Instance Segmentation | ** Mask R - CNN ** | [`mmd- 3x - mask- rcnn_swin- t- p4- w7_fpn_1x_coco` ](https:// ml.azure.com/ registries/ azureml/ models/ mmd- 3x - mask- rcnn_swin- t- p4- w7_fpn_1x_coco/ version/ 8 )
381
381
382
382
We constantly update the list of curated models. You can get the most up- to- date list of the curated models for a given task using the Python SDK :
383
383
```
0 commit comments