Skip to content

Commit 29c38ea

Browse files
committed
consistent pattern usage
1 parent 8f2e37e commit 29c38ea

6 files changed

+6
-6
lines changed

articles/machine-learning/how-to-access-data-batch-endpoints-jobs.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ Use the Azure Machine Learning SDK for Python to sign in:
5959
from azure.ai.ml import MLClient
6060
from azure.identity import DefaultAzureCredential
6161

62-
ml_client = MLClient.from_config(DefaultAzureCredential())
62+
ml_client = MLClient.from_config(credential=DefaultAzureCredential())
6363
```
6464

6565
If your configuration runs outside an Azure Machine Learning compute instance, you need to specify the workspace where the endpoint is deployed:

articles/machine-learning/how-to-package-models-app-service.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ Follow these steps to prepare your system.
8787
1. If you're running in an Azure Machine Learning compute instance, create an `MLClient` as follows:
8888
8989
```python
90-
ml_client = MLClient.from_config(DefaultAzureCredential())
90+
ml_client = MLClient.from_config(credential=DefaultAzureCredential())
9191
```
9292
9393
Otherwise, configure workspace details and get a handle to the workspace:

articles/machine-learning/how-to-package-models-moe.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ The workspace is the top-level resource for Azure Machine Learning, providing a
8282
2. If you're running in a compute instance in Azure Machine Learning, create an `MLClient` as follows:
8383

8484
```python
85-
ml_client = MLClient.from_config(DefaultAzureCredential())
85+
ml_client = MLClient.from_config(credential=DefaultAzureCredential())
8686
```
8787

8888
Otherwise, configure your workspace details and get a handle to the workspace:

articles/machine-learning/how-to-package-models.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,7 @@ The workspace is the top-level resource for Azure Machine Learning, providing a
9999
2. If you're running in a compute instance in Azure Machine Learning, create an `MLClient` as follows:
100100

101101
```python
102-
ml_client = MLClient.from_config(DefaultAzureCredential())
102+
ml_client = MLClient.from_config(credential=DefaultAzureCredential())
103103
```
104104

105105
Otherwise, configure your workspace details and get a handle to the workspace:

articles/machine-learning/migrate-to-v2-command-job.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ This article gives a comparison of scenario(s) in SDK v1 and SDK v2.
6161
from azure.identity import DefaultAzureCredential
6262

6363
#connect to the workspace
64-
ml_client = MLClient.from_config(DefaultAzureCredential())
64+
ml_client = MLClient.from_config(credential=DefaultAzureCredential())
6565

6666
# set up pytorch environment
6767
env = Environment(

articles/machine-learning/migrate-to-v2-local-runs.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ This article gives a comparison of scenario(s) in SDK v1 and SDK v2.
5757
from azure.identity import DefaultAzureCredential
5858

5959
#connect to the workspace
60-
ml_client = MLClient.from_config(DefaultAzureCredential())
60+
ml_client = MLClient.from_config(credential=DefaultAzureCredential())
6161

6262
# set up pytorch environment
6363
env = Environment(

0 commit comments

Comments
 (0)