Skip to content

Commit 2a9b5a0

Browse files
Merge pull request #72 from ssalgadodev/patch-1
Update how-to-inference-onnx-automl-image-models.md
2 parents f45d5c9 + 200d4dd commit 2a9b5a0

File tree

2 files changed

+10
-11
lines changed

2 files changed

+10
-11
lines changed

articles/machine-learning/how-to-inference-onnx-automl-image-models.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -333,7 +333,7 @@ Every ONNX model has a predefined set of input and output formats.
333333

334334
# [Multi-class image classification](#tab/multi-class)
335335

336-
This example applies the model trained on the [fridgeObjects](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/fridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multiclass-task-fridge-items).
336+
This example applies the model trained on the [fridgeObjects](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multiclass-task-fridge-items).
337337

338338
### Input format
339339

@@ -354,7 +354,7 @@ The output is an array of logits for all the classes/labels.
354354

355355
# [Multi-label image classification](#tab/multi-label)
356356

357-
This example uses the model trained on the [multi-label fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multilabel-task-fridge-items).
357+
This example uses the model trained on the [multi-label fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multilabel-task-fridge-items).
358358

359359
### Input format
360360

@@ -375,8 +375,7 @@ The output is an array of logits for all the classes/labels.
375375

376376

377377
# [Object detection with Faster R-CNN or RetinaNet](#tab/object-detect-cnn)
378-
379-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
378+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
380379

381380
### Input format
382381

@@ -408,7 +407,7 @@ The following table describes boxes, labels, and scores returned for each sample
408407

409408
# [Object detection with YOLO](#tab/object-detect-yolo)
410409

411-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
410+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
412411

413412
### Input format
414413

@@ -430,7 +429,7 @@ Each cell in the list indicates box detections of a sample with shape `(n_boxes,
430429

431430
# [Instance segmentation](#tab/instance-segmentation)
432431

433-
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjectsMask.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-instance-segmentation-task-fridge-items).
432+
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-instance-segmentation-task-fridge-items).
434433

435434
>[!IMPORTANT]
436435
> Only Mask R-CNN is supported for instance segmentation tasks. The input and output formats are based on Mask R-CNN only.

articles/machine-learning/v1/how-to-inference-onnx-automl-image-models.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -266,7 +266,7 @@ Every ONNX model has a predefined set of input and output formats.
266266

267267
# [Multi-class image classification](#tab/multi-class)
268268

269-
This example applies the model trained on the [fridgeObjects](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/fridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass).
269+
This example applies the model trained on the [fridgeObjects](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass).
270270

271271
### Input format
272272

@@ -287,7 +287,7 @@ The output is an array of logits for all the classes/labels.
287287

288288
# [Multi-label image classification](#tab/multi-label)
289289

290-
This example uses the model trained on the [multi-label fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multilabel).
290+
This example uses the model trained on the [multi-label fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multilabel).
291291

292292
### Input format
293293

@@ -309,7 +309,7 @@ The output is an array of logits for all the classes/labels.
309309

310310
# [Object detection with Faster R-CNN or RetinaNet](#tab/object-detect-cnn)
311311

312-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
312+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
313313

314314
### Input format
315315

@@ -341,7 +341,7 @@ The following table describes boxes, labels and scores returned for each sample
341341

342342
# [Object detection with YOLO](#tab/object-detect-yolo)
343343

344-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
344+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
345345

346346
### Input format
347347

@@ -363,7 +363,7 @@ Each cell in the list indicates box detections of a sample with shape `(n_boxes,
363363

364364
# [Instance segmentation](#tab/instance-segmentation)
365365

366-
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjectsMask.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-instance-segmentation).
366+
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-instance-segmentation).
367367

368368
>[!IMPORTANT]
369369
> Only Mask R-CNN is supported for instance segmentation tasks. The input and output formats are based on Mask R-CNN only.

0 commit comments

Comments
 (0)