You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This example applies the model trained on the [fridgeObjects](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/fridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multiclass-task-fridge-items).
336
+
This example applies the model trained on the [fridgeObjects](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multiclass-task-fridge-items).
337
337
338
338
### Input format
339
339
@@ -354,7 +354,7 @@ The output is an array of logits for all the classes/labels.
This example uses the model trained on the [multi-label fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multilabel-task-fridge-items).
357
+
This example uses the model trained on the [multi-label fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multilabel-task-fridge-items).
358
358
359
359
### Input format
360
360
@@ -375,8 +375,7 @@ The output is an array of logits for all the classes/labels.
375
375
376
376
377
377
# [Object detection with Faster R-CNN or RetinaNet](#tab/object-detect-cnn)
378
-
379
-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
378
+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
380
379
381
380
### Input format
382
381
@@ -408,7 +407,7 @@ The following table describes boxes, labels, and scores returned for each sample
408
407
409
408
# [Object detection with YOLO](#tab/object-detect-yolo)
410
409
411
-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
410
+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
412
411
413
412
### Input format
414
413
@@ -430,7 +429,7 @@ Each cell in the list indicates box detections of a sample with shape `(n_boxes,
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjectsMask.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-instance-segmentation-task-fridge-items).
432
+
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-instance-segmentation-task-fridge-items).
434
433
435
434
>[!IMPORTANT]
436
435
> Only Mask R-CNN is supported for instance segmentation tasks. The input and output formats are based on Mask R-CNN only.
This example applies the model trained on the [fridgeObjects](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/fridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass).
269
+
This example applies the model trained on the [fridgeObjects](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) dataset with 134 images and 4 classes/labels to explain ONNX model inference. For more information on training an image classification task, see the [multi-class image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multiclass).
270
270
271
271
### Input format
272
272
@@ -287,7 +287,7 @@ The output is an array of logits for all the classes/labels.
This example uses the model trained on the [multi-label fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multilabel).
290
+
This example uses the model trained on the [multi-label fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-classification-multilabel).
291
291
292
292
### Input format
293
293
@@ -309,7 +309,7 @@ The output is an array of logits for all the classes/labels.
309
309
310
310
# [Object detection with Faster R-CNN or RetinaNet](#tab/object-detect-cnn)
311
311
312
-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
312
+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
313
313
314
314
### Input format
315
315
@@ -341,7 +341,7 @@ The following table describes boxes, labels and scores returned for each sample
341
341
342
342
# [Object detection with YOLO](#tab/object-detect-yolo)
343
343
344
-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
344
+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-object-detection).
345
345
346
346
### Input format
347
347
@@ -363,7 +363,7 @@ Each cell in the list indicates box detections of a sample with shape `(n_boxes,
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjectsMask.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-instance-segmentation).
366
+
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/image-instance-segmentation).
367
367
368
368
>[!IMPORTANT]
369
369
> Only Mask R-CNN is supported for instance segmentation tasks. The input and output formats are based on Mask R-CNN only.
0 commit comments