Skip to content

Commit 2cef88d

Browse files
committed
Address PR comments
1 parent 32ed24f commit 2cef88d

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-log-mlflow-models.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.author: mopeakande
88
ms.reviewer: fasantia
99
ms.service: azure-machine-learning
1010
ms.subservice: mlops
11-
ms.date: 02/19/2025
11+
ms.date: 03/04/2025
1212
ms.topic: how-to
1313
ms.custom: cliv2, sdkv2
1414
# customer intent: As a developer, I want to see how to log MLflow models so that I can use automatic logging or custom models.
@@ -172,7 +172,7 @@ class ModelWrapper(PythonModel):
172172
self._model = model
173173

174174
def predict(self, context: PythonModelContext, data):
175-
# The next line doesn't have to predict values. Instead, you can use model.recommend(), model.forecast(), or a similar function.
175+
# The next line uses a prediction function. However, you could also use model.recommend(), model.forecast(), or a similar function instead.
176176
return self._model.predict_proba(data)
177177

178178
# You can add extra functions if you need to. Because the model is serialized,
@@ -381,6 +381,6 @@ mlflow.pyfunc.log_model("classifier",
381381

382382
---
383383

384-
## Next steps
384+
## Next step
385385

386386
* [Guidelines for deploying MLflow models](how-to-deploy-mlflow-models.md)

0 commit comments

Comments
 (0)