Skip to content

Commit 2e48ee2

Browse files
authored
Merge pull request #5583 from MicrosoftDocs/main
6/17/2025 PM Publish
2 parents bcef902 + 18c2aef commit 2e48ee2

16 files changed

+115
-72
lines changed

articles/ai-foundry/agents/how-to/tools/bing-code-samples.md

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ services: cognitive-services
66
manager: nitinme
77
ms.service: azure-ai-agent-service
88
ms.topic: how-to
9-
ms.date: 04/09/2025
9+
ms.date: 06/17/2025
1010
author: aahill
1111
ms.author: aahi
1212
zone_pivot_groups: selection-bing-grounding-code
@@ -114,7 +114,11 @@ Create a run and observe that the model uses the Grounding with Bing Search tool
114114

115115
```python
116116
# Create and process an agent run
117-
run = project_client.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
117+
run = project_client.agents.runs.create_and_process(
118+
thread_id=thread.id,
119+
agent_id=agent.id,
120+
# tool_choice={"type": "bing_grounding"} # optional, you can force the model to use Grounding with Bing Search tool
121+
)
118122
print(f"Run finished with status: {run.status}")
119123

120124
# Check if the run failed

articles/ai-foundry/agents/how-to/tools/fabric.md

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ description: Learn how to perform data analytics in Azure AI Foundry Agents usin
55
author: aahill
66
ms.author: aahi
77
manager: nitinme
8-
ms.date: 04/07/2025
8+
ms.date: 06/17/2025
99
ms.service: azure-ai-agent-service
1010
ms.topic: how-to
1111
ms.custom:
@@ -37,12 +37,15 @@ You need to first build and publish a Fabric data agent and then connect your Fa
3737
## Setup
3838
> [!NOTE]
3939
> * The model you selected in Azure AI Foundry Agent setup is only used for agent orchestration and response generation. It doesn't impact which model Fabric data agent uses for NL2SQL operation.
40-
> * To help your model invoke your Microsoft Fabric tool in the expected way, please make sure you update agent instructions with descriptions of your Fabric data agent and what data it has access to. An example is "for customer and product sales related data, please use the Fabric tool". We recommend using a smaller AI model such as `gpt-4o-mini`. You can also use `tool_choice` parameter in SDK or API to force Fabric tool to be invoked at each run.
40+
> * To help your model invoke your Microsoft Fabric tool in the expected way, make sure you update agent instructions with descriptions of your Fabric data agent and what data it can access. An example is "for customer and product sales related data, please use the Fabric tool". We recommend using a smaller AI model such as `gpt-4o-mini`. You can also use `tool_choice` parameter in SDK or API to force Fabric tool to be invoked at each run.
4141
4242
1. Create an Azure AI Foundry Agent by following the steps in the [quickstart](../../quickstart.md).
4343

4444
1. Create and publish a [Fabric data agent](https://go.microsoft.com/fwlink/?linkid=2312910)
4545

46+
> [!NOTE]
47+
> * Make sure you have **published** the data agent in Fabric.
48+
4649
:::zone pivot="portal"
4750

4851
You can add the Microsoft Fabric tool to an agent programmatically using the code examples listed at the top of this article, or the Azure AI Foundry portal. If you want to use the portal:
@@ -370,10 +373,10 @@ for await (const m of messagesIterator) {
370373
-->
371374
:::zone pivot="rest"
372375

373-
Follow the [REST API Quickstart](../../quickstart.md?pivots=rest-api#api-call-information) to set the right values for the environment variables `AGENT_TOKEN`, `AZURE_AI_FOUNDRY_PROJECT_ENDPOINT` and `API_VERSION`. For `API_VERSION`, please make sure you are using `2025-05-15-preview`.
376+
Follow the [REST API Quickstart](../../quickstart.md?pivots=rest-api#api-call-information) to set the right values for the environment variables `AGENT_TOKEN`, `AZURE_AI_FOUNDRY_PROJECT_ENDPOINT` and `API_VERSION`. For `API_VERSION`, make sure you are using `2025-05-15-preview`.
374377
> [!IMPORTANT]
375378
> The following samples are applicable if you are using **Azure AI Foundry Project** resource with Microsoft Fabric tool through REST API call
376-
> Your connection id should be in this format: `/subscriptions/<sub-id>/resourceGroups/<your-rg-name>/providers/Microsoft.CognitiveServices/accounts/<your-ai-services-name>/projects/<your-project-name>/connections/<your-fabric-connection-name>`
379+
> Your connection ID should be in this format: `/subscriptions/<sub-id>/resourceGroups/<your-rg-name>/providers/Microsoft.CognitiveServices/accounts/<your-ai-services-name>/projects/<your-project-name>/connections/<your-fabric-connection-name>`
377380
378381
### Create an agent with the Microsoft Fabric tool enabled
379382

articles/ai-foundry/agents/how-to/tools/overview.md

Lines changed: 34 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ services: cognitive-services
66
manager: nitinme
77
ms.service: azure-ai-agent-service
88
ms.topic: how-to
9-
ms.date: 05/08/2025
9+
ms.date: 06/17/2025
1010
author: aahill
1111
ms.author: aahi
1212
ms.custom: azure-ai-agents
@@ -45,7 +45,16 @@ When a user sends a query to the agent, it will create a [thread, run, and messa
4545

4646
There are various ways to influence how your AI agent invokes tools:
4747

48-
- The `tool_choice` parameter: Most deterministic, controls which (if any) tool is called by the model. By default, it is set to `auto`, which means the AI model will decide. If you want to **force** the model to call a specific tool, you can provide the specification of this tool, for example `{"type": "function", "function": {"name": "my_function"}}`.
48+
- The `tool_choice` parameter: Most deterministic way of controlling which (if any) tool is called by the model. By default, it is set to `auto`, which means the AI model will decide. If you want to **force** the model to call a specific tool, you can provide the specification of this tool, for example
49+
50+
```python
51+
run = project_client.agents.runs.create_and_process(
52+
thread_id=thread.id,
53+
agent_id=agent.id,
54+
tool_choice={"type": "bing_grounding"} # specify the tool to use
55+
)
56+
```
57+
4958
- The `instructions` parameter: Nondeterministic. Use the instructions to help the AI model understand your use case and the purposes of each tool. You want to tell the AI model what information or actions each tool can do. For example "*use the AI Search tool `<tool_name>` for product related information, use the Fabric tool `<tool_name>` for sales related information*." Sometimes the user query can be responded by the model's base knowledge or by the tools, you want to provide instructions like "*use the tool outputs to generate a response, don't use your own knowledge.*"
5059

5160
## Prerequisites
@@ -65,7 +74,7 @@ The Foundry Agent Service provides the following built-in tools. You can use the
6574
|[File Search](file-search.md) | Augment agents with knowledge from outside its model, such as proprietary product information or documents provided by your users. |
6675
|[Function calling](function-calling.md) |Describe the structure of functions you create to an agent and have them be called when appropriate during the agent's interactions with users. |
6776
|[Grounding with Bing Search](bing-grounding.md) | Enable your agent to use Grounding with Bing Search to access and return information from the internet. |
68-
| [Grounding with Bing Custom Search](bing-custom-search.md) | Enhance your Agent response with selected web domains |
77+
| [Grounding with Bing Custom Search (preview)](bing-custom-search.md) | Enhance your Agent response with selected web domains |
6978
| [Microsoft Fabric (preview)](fabric.md) | Integrate your agent with the [Microsoft Fabric data agent](https://go.microsoft.com/fwlink/?linkid=2312815) to unlock powerful data analysis capabilities. |
7079
| [OpenAPI 3.0 Specified tool ](openapi-spec.md) | Connect your Azure AI Agent to external APIs using functions with an OpenAPI 3.0 specification. |
7180

@@ -88,3 +97,25 @@ The following tools are authored by third-party partners. Use the links below to
8897
| [Morningstar](https://github.com/azure-ai-foundry/foundry-samples/tree/main/samples/microsoft/python/getting-started-agents/3p-tools/Morningstar) | Access up-to-date investment research and data such as analyst research, expert commentary, and essential Morningstar data. |
8998
| [Trademo](https://github.com/azure-ai-foundry/foundry-samples/tree/main/samples/microsoft/python/getting-started-agents/3p-tools/Trademo_Glocal_trade) | Provide latest duties and past shipment data for trade between multiple countries |
9099
| [Tripadvisor](https://github.com/azure-ai-foundry/foundry-samples/tree/main/samples/microsoft/python/getting-started-agents/3p-tools/Tripadvisor) | Get travel data, guidance and reviews |
100+
101+
## Best Practices
102+
103+
### Use system instruction to help model invoke the right tool
104+
105+
In order for the model to understand which tools to use, you want to provide detailed instruction for the model to describe when and how to use the tool. You might want to consider providing the following information:
106+
- Primary Objective: what is the objective of this agent? what is the goal of related tasks? what are the expected outcomes?
107+
- Your responsibilities: what tasks you expect the agent to perform. For example, calling Grounding with Bing Search tool to get the latest information about local events.
108+
- Inputs you may receive: what inputs do you expect the agent to receive?
109+
- For each tool:
110+
- The tool name
111+
- A description of the tool
112+
- Triggers: when do you expect this tool to be called? What type of information will be searched? What will queries contain?
113+
- An example of a query
114+
115+
For example, you might provide tool instructions like the following for the Grounding with Bing Search tool:
116+
117+
Grounding with Bing Search tool
118+
- Use: Gather external trends or news to enrich the post with real-time insights.
119+
- Trigger this when:
120+
- The user asks to reference recent data or competitive context.
121+
- Example: "Can you reference the latest industry trends?" or "What are competitors doing?".

articles/ai-foundry/agents/how-to/tools/sharepoint.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -44,6 +44,9 @@ Integrate your agents with the **Microsoft SharePoint** to chat with your privat
4444
1. Click to add a new connection. Once you have added a connection, you can directly select from existing list.
4545
1. To create a new connection, you need to find `site_url` in your SharePoint site. You can add either a SharePoint site or a SharePoint folder. For a SharePoint site, it will look like `https://microsoft.sharepoint.com/teams/<site_name>`. For a SharePoint folder, it will look like `https://microsoft.sharepoint.com/teams/<site_name>/Shared%20documents/<folder_name>`
4646

47+
> [!NOTE]
48+
> * Your `site_url` needs to follow the format above. If you copy the entire value from the address bar of your SharePoint, it won't work.
49+
4750
1. Then, you can add it to your connection. Make sure you have selected the **is secret** option.
4851

4952
## Next steps

articles/ai-foundry/concepts/model-lifecycle-retirement.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -245,6 +245,12 @@ The following tables list the timelines for models that are on track for retirem
245245
|-------|-------------------|------------------------|-----------------------|-----------------------------|
246246
| [DeepSeek-V3](https://aka.ms/azureai/landing/DeepSeek-V3) | April 10, 2025 | May 31, 2025 | August 31, 2025 | [DeepSeek-V3-0324](https://aka.ms/azureai/landing/DeepSeek-V3-0324) |
247247

248+
#### Gretel
249+
250+
| Model | Legacy date (UTC) | Deprecation date (UTC) | Retirement date (UTC) | Suggested replacement model |
251+
|-------|-------------------|------------------------|-----------------------|-----------------------------|
252+
| [Gretel-Navigator-Tabular](https://ai.azure.com/explore/models/Gretel-Navigator-Tabular/version/1/registry/azureml-gretel) | N/A | June 16, 2025 | September 16, 2025 | N/A |
253+
248254
#### Meta
249255

250256
| Model | Legacy date (UTC) | Deprecation date (UTC) | Retirement date (UTC) | Suggested replacement model |

articles/ai-services/openai/azure-government.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -26,10 +26,10 @@ The following sections show model availability by region and deployment type. Mo
2626
<br>
2727

2828
## Standard deployment model availability
29-
| **Region** | **o3-mini USGov DataZone** | **gpt-4o**, **2024-05-13** | **gpt-4o-mini**, **2024-07-18** | **gpt-4**, **1106-Preview** | **gpt-35-turbo**, **0125** | **text-embedding-3-large**, **1** | **text-embedding-3-small**, **1** | **text-embedding-ada-002**, **2** |
30-
|:--------------|:--------------------------:|:--------------------------:|:-------------------------------:|:---------------------------:|:--------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|
31-
| usgovarizona |||||||||
32-
| usgovvirginia ||| - || | - | - ||
29+
| **Region** | **o3-mini USGov DataZone** | **gpt-4o**, **2024-05-13** | **gpt-4o-mini**, **2024-07-18** | **gpt-35-turbo**, **0125** | **text-embedding-3-large**, **1** | **text-embedding-3-small**, **1** | **text-embedding-ada-002**, **2** |
30+
|:--------------|:--------------------------:|:--------------------------:|:-------------------------------:|:--------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|
31+
| usgovarizona ||||||||
32+
| usgovvirginia ||| - || - | - ||
3333

3434
* USGov DataZone provides access to the model from both usgovarizona and usgovvirginia.
3535
* Data stored at rest remains in the designated Azure region of the resource.
@@ -39,17 +39,17 @@ Data zone standard deployments are available in the same Azure OpenAI resource a
3939

4040
To request quota increases for these models, submit a request at [https://aka.ms/AOAIGovQuota](https://aka.ms/AOAIGovQuota). Note the following maximum quota limits allowed via that form:
4141

42-
| **gpt-4o** | **gpt-4o-mini** | **gpt-4** | **gpt-35-turbo** | **text-embedding-3-large** | **text-embedding-ada-002**|
43-
|:----------:|:---------------:|:---------:|:----------------:|:--------------------------:|:-------------------------:|
44-
| 300k | 600k | 200k | 500k | 700k | 700k |
42+
| **gpt-4o** | **gpt-4o-mini** | **gpt-35-turbo** | **text-embedding-3-large** | **text-embedding-ada-002**|
43+
|:----------:|:---------------:|:----------------:|:--------------------------:|:-------------------------:|
44+
| 300k | 600k | 500k | 700k | 700k |
4545

4646
<br>
4747

4848
## Provisioned deployment model availability
49-
| **Region** | **gpt-4o**, **2024-05-13** | **gpt-4o-mini**, **2024-07-18** | **gpt-4**, **1106-Preview** | **gpt-35-turbo**, **0125** |
50-
|:--------------|:--------------------------:|:-------------------------------:|:---------------------------:|:--------------------------:|
51-
| usgovarizona || - | - | |
52-
| usgovvirginia || - | - | |
49+
| **Region** | **gpt-4o**, **2024-05-13** | **gpt-4o-mini**, **2024-07-18** | **gpt-35-turbo**, **0125** |
50+
|:--------------|:--------------------------:|:-------------------------------:|:--------------------------:|
51+
| usgovarizona || - ||
52+
| usgovvirginia || - ||
5353

5454
<br>
5555

articles/ai-services/openai/quotas-limits.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ The following sections provide you with a quick guide to the default quotas and
4949
| Max file size for Assistants & fine-tuning | 512 MB<br/><br/>200 MB via [Azure AI Foundry portal](https://ai.azure.com/?cid=learnDocs) |
5050
| Max size for all uploaded files for Assistants |200 GB |
5151
| Assistants token limit | 2,000,000 token limit |
52-
| GPT-4o max images per request (# of images in the messages array/conversation history) | 50 |
52+
| GPT-4o and GPT-4.1 max images per request (# of images in the messages array/conversation history) | 50 |
5353
| GPT-4 `vision-preview` & GPT-4 `turbo-2024-04-09` default max tokens | 16 <br><br> Increase the `max_tokens` parameter value to avoid truncated responses. GPT-4o max tokens defaults to 4096. |
5454
| Max number of custom headers in API requests<sup>1</sup> | 10 |
5555
| Message character limit | 1048576 |

articles/search/includes/quickstarts/agentic-retrieval-python.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ author: haileytap
44
ms.author: haileytapia
55
ms.service: azure-ai-search
66
ms.topic: include
7-
ms.date: 6/15/2025
7+
ms.date: 6/17/2025
88
---
99

1010
[!INCLUDE [Feature preview](../previews/preview-generic.md)]
@@ -250,9 +250,9 @@ messages.append({
250250
"""
251251
})
252252

253-
retrieval_result = agent_client.knowledge_retrieval.retrieve(
253+
retrieval_result = agent_client.retrieve(
254254
retrieval_request=KnowledgeAgentRetrievalRequest(
255-
messages=[KnowledgeAgentMessage(role=msg["role"], content=[KnowledgeAgentMessageTextContent(text=msg["content"])]) for msg in messages],
255+
messages=[KnowledgeAgentMessage(role=msg["role"], content=[KnowledgeAgentMessageTextContent(text=msg["content"])]) for msg in messages if msg["role"] != "system"],
256256
target_index_params=[KnowledgeAgentIndexParams(index_name=index_name, reranker_threshold=2.5)]
257257
)
258258
)
@@ -414,9 +414,9 @@ messages.append({
414414
"content": "How do I find lava at night?"
415415
})
416416

417-
retrieval_result = agent_client.knowledge_retrieval.retrieve(
417+
retrieval_result = agent_client.retrieve(
418418
retrieval_request=KnowledgeAgentRetrievalRequest(
419-
messages=[KnowledgeAgentMessage(role=msg["role"], content=[KnowledgeAgentMessageTextContent(text=msg["content"])]) for msg in messages],
419+
messages=[KnowledgeAgentMessage(role=msg["role"], content=[KnowledgeAgentMessageTextContent(text=msg["content"])]) for msg in messages if msg["role"] != "system"],
420420
target_index_params=[KnowledgeAgentIndexParams(index_name=index_name, reranker_threshold=2.5)]
421421
)
422422
)

0 commit comments

Comments
 (0)