Skip to content

Commit 35a9d84

Browse files
committed
Refresh articles
1 parent 21443d6 commit 35a9d84

13 files changed

+100
-83
lines changed
-660 KB
Loading
7.36 KB
Loading
-6.1 KB
Loading

articles/machine-learning/v1/how-to-deploy-model-designer.md

Lines changed: 52 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
---
2-
title: Use the studio to deploy models trained in the designer
2+
title: Use Studio to Deploy Models Trained in Designer
33
titleSuffix: Azure Machine Learning
44
description: Use Azure Machine Learning studio to deploy machine learning models without writing a single line of code.
55
services: machine-learning
@@ -8,12 +8,12 @@ ms.subservice: core
88
ms.author: lagayhar
99
author: lgayhardt
1010
ms.reviewer: keli19
11-
ms.date: 08/15/2022
11+
ms.date: 06/13/2025
1212
ms.topic: how-to
1313
ms.custom: UpdateFrequency5, deploy, studio, designer
1414
---
1515

16-
# Use the studio to deploy models trained in the designer
16+
# Use Azure Machine Learning studio to deploy models trained in the designer
1717

1818
[!INCLUDE [v1 deprecation](../includes/sdk-v1-deprecation.md)]
1919

@@ -28,7 +28,7 @@ Deployment in the studio consists of the following steps:
2828
1. (Optional) Configure the entry script.
2929
1. Deploy the model to a compute target.
3030

31-
You can also deploy models directly in the designer to skip model registration and file download steps. This can be useful for rapid deployment. For more information see, [Deploy a model with the designer](tutorial-designer-automobile-price-deploy.md).
31+
You can also deploy models directly in the designer to skip model registration and file download steps. This can be useful for rapid deployment. For more information, see [Deploy a model with the designer](tutorial-designer-automobile-price-deploy.md).
3232

3333
Models trained in the designer can also be deployed through the SDK or command-line interface (CLI). For more information, see [Deploy your existing model with Azure Machine Learning](how-to-deploy-and-where.md).
3434

@@ -37,6 +37,7 @@ Models trained in the designer can also be deployed through the SDK or command-l
3737
* [An Azure Machine Learning workspace](../quickstart-create-resources.md)
3838

3939
* A completed training pipeline containing one of following components:
40+
4041
- [Train Model Component](../algorithm-module-reference/train-model.md)
4142
- [Train Anomaly Detection Model component](../algorithm-module-reference/train-anomaly-detection-model.md)
4243
- [Train Clustering Model component](../algorithm-module-reference/train-clustering-model.md)
@@ -45,47 +46,59 @@ Models trained in the designer can also be deployed through the SDK or command-l
4546
- [Train Vowpal Wabbit Model component](../algorithm-module-reference/train-vowpal-wabbit-model.md)
4647
- [Train Wide & Deep Model component](../algorithm-module-reference/train-wide-and-deep-recommender.md)
4748

49+
To learn more about pipelines, see [What are Azure Machine Learning pipelines?](../concept-ml-pipelines.md)
50+
4851
## Register the model
4952

5053
After the training pipeline completes, register the trained model to your Azure Machine Learning workspace to access the model in other projects.
5154

52-
1. Select the [Train Model component](../algorithm-module-reference/train-model.md).
53-
1. Select the **Outputs + logs** tab in the right pane.
54-
1. Select the **Register Model** icon ![Screenshot of the gear icon](./media/how-to-deploy-model-designer/register-model-icon.png).
55+
1. Sign in to [Azure Machine Learning studio](https://ml.azure.com), and select your completed pipeline.
56+
57+
1. Double-click the [Train Model component](../algorithm-module-reference/train-model.md) to open the details pane.
58+
59+
1. Select the **Outputs + logs** tab in the details pane.
60+
61+
1. Select **+ Register model**.
5562

56-
![Screenshot of right pane of Train Model component](./media/how-to-deploy-model-designer/train-model-right-pane.png)
63+
:::image type="content" source="./media/how-to-deploy-model-designer/train-model-right-pane.png" alt-text="Screenshot of right pane of Train Model component." lightbox="./media/how-to-deploy-model-designer/train-model-right-pane.png":::
5764

5865
1. Enter a name for your model, then select **Save**.
5966

6067
After registering your model, you can find it in the **Models** asset page in the studio.
61-
62-
![Screenshot of registered model in the Models asset page](./media/how-to-deploy-model-designer/models-asset-page.png)
68+
69+
:::image type="content" source="./media/how-to-deploy-model-designer/models-asset-page.png" alt-text="Screenshot of registered model in the Models asset page.":::
6370

6471
## Download the entry script file and conda dependencies file
6572

6673
You need the following files to deploy a model in Azure Machine Learning studio:
6774

68-
- **Entry script file** - loads the trained model, processes input data from requests, does real-time inferences, and returns the result. The designer automatically generates a `score.py` entry script file when the **Train Model** component completes.
75+
- **Entry script file**: loads the trained model, processes input data from requests, does real-time inferences, and returns the result. The designer automatically generates a `score.py` entry script file when the **Train Model** component completes.
6976

70-
- **Conda dependencies file** - specifies which pip and conda packages your webservice depends on. The designer automatically creates a `conda_env.yaml` file when the **Train Model** component completes.
77+
- **Conda dependencies file**: specifies which pip and conda packages your webservice depends on. The designer automatically creates a `conda_env.yaml` file when the **Train Model** component completes.
7178

7279
You can download these two files in the right pane of the **Train Model** component:
7380

7481
1. Select the **Train Model** component.
82+
7583
1. In the **Outputs + logs** tab, select the folder `trained_model_outputs`.
84+
7685
1. Download the `conda_env.yaml` file and `score.py` file.
7786

78-
![Screenshot of download files for deployment in right pane](./media/how-to-deploy-model-designer/download-artifacts-in-right-pane.png)
87+
:::image type="content" source="./media/how-to-deploy-model-designer/download-artifacts-in-right-pane.png" alt-text="Screenshot of download files for deployment in right pane." lightbox="./media/how-to-deploy-model-designer/download-artifacts-in-right-pane.png":::
7988

8089
Alternatively, you can download the files from the **Models** asset page after registering your model:
8190

8291
1. Navigate to the **Models** asset page.
92+
8393
1. Select the model you want to deploy.
94+
8495
1. Select the **Artifacts** tab.
96+
8597
1. Select the `trained_model_outputs` folder.
98+
8699
1. Download the `conda_env.yaml` file and `score.py` file.
87100

88-
![Screenshot of download files for deployment in model detail page](./media/how-to-deploy-model-designer/download-artifacts-in-models-page.png)
101+
:::image type="content" source="./media/how-to-deploy-model-designer/download-artifacts-in-models-page.png" alt-text="Screenshot of download files for deployment in model detail page." lightbox="./media/how-to-deploy-model-designer/download-artifacts-in-models-page.png":::
89102

90103
> [!NOTE]
91104
> The `score.py` file provides nearly the same functionality as the **Score Model** components. However, some components like [Score SVD Recommender](../algorithm-module-reference/score-svd-recommender.md), [Score Wide and Deep Recommender](../algorithm-module-reference/score-wide-and-deep-recommender.md), and [Score Vowpal Wabbit Model](../algorithm-module-reference/score-vowpal-wabbit-model.md) have parameters for different scoring modes. You can also change those parameters in the entry script.
@@ -97,21 +110,25 @@ Alternatively, you can download the files from the **Models** asset page after r
97110
After downloading the necessary files, you're ready to deploy the model.
98111

99112
1. In the **Models** asset page, select the registered model.
100-
1. Select **Deploy** and select **Deploy to web service**.
101-
![Screenshot of deploy button in model asset page](./media/how-to-deploy-model-designer/open-deploy-wizard.png)
113+
114+
1. Select **Use this model**, then select **Web service** from the drop-down menu.
115+
116+
:::image type="content" source="./media/how-to-deploy-model-designer/open-deploy-wizard.png" alt-text="Screenshot of deploy button in model asset page." lightbox="./media/how-to-deploy-model-designer/open-deploy-wizard.png":::
117+
102118
1. In the configuration menu, enter the following information:
103119

104120
- Input a name for the endpoint.
105-
- Select to deploy the model to [Azure Kubernetes Service](how-to-deploy-azure-kubernetes-service.md) or [Azure Container Instance](how-to-deploy-azure-container-instance.md).
121+
- Select the [AksCompute](how-to-deploy-azure-kubernetes-service.md) or [Azure Container Instance](how-to-deploy-azure-container-instance.md) compute type.
122+
- Select a compute name.
106123
- Upload the `score.py` for the **Entry script file**.
107124
- Upload the `conda_env.yml` for the **Conda dependencies file**.
108125

109126
>[!TIP]
110-
> In **Advanced** setting, you can set CPU/Memory capacity and other parameters for deployment. These settings are important for certain models such as PyTorch models, which consume considerable amount of memery (about 4 GB).
127+
> In the **Advanced** setting, you can set CPU/Memory capacity and other parameters for deployment. These settings are important for certain models such as PyTorch models, which consume considerable amount of memory (about 4 GB).
111128
112129
1. Select **Deploy** to deploy your model as an online endpoint.
113130

114-
![Screenshot of deploy model in model asset page](./media/how-to-deploy-model-designer/deploy-model.png)
131+
:::image type="content" source="./media/how-to-deploy-model-designer/deploy-model.png" alt-text="Screenshot of deploy model in model asset page.":::
115132

116133
## Consume the online endpoint
117134

@@ -143,7 +160,7 @@ score_result = service.run(json.dumps(sample_data))
143160
print(f'Inference result = {score_result}')
144161
```
145162

146-
### Consume computer vision related online endpoints
163+
### Consume computer vision-related online endpoints
147164

148165
When consuming computer vision related online endpoints, you need to convert images to bytes, since web service only accepts string as input. Following is the sample code:
149166

@@ -203,12 +220,11 @@ with open(data_file_path, 'w') as f:
203220

204221
Some components in the designer like [Score SVD Recommender](../algorithm-module-reference/score-svd-recommender.md), [Score Wide and Deep Recommender](../algorithm-module-reference/score-wide-and-deep-recommender.md), and [Score Vowpal Wabbit Model](../algorithm-module-reference/score-vowpal-wabbit-model.md) have parameters for different scoring modes.
205222

206-
In this section, you learn how to update these parameters in the entry script file too.
223+
In this section, you learn how to update these parameters in the entry script file.
207224

208-
The following example updates the default behavior for a trained **Wide & Deep recommender** model. By default, the `score.py` file tells the web service to predict ratings between users and items.
209-
210-
You can modify the entry script file to make item recommendations, and return recommended items by changing the `recommender_prediction_kind` parameter.
225+
The following example updates the default behavior for a trained **Wide & Deep Recommender** model. By default, the `score.py` file tells the web service to predict ratings between users and items.
211226

227+
You can modify the entry script file to make item recommendations, and to return recommended items, by changing the `recommender_prediction_kind` parameter.
212228

213229
```python
214230
import os
@@ -260,22 +276,22 @@ def run(data):
260276
return json.dumps(result_df.to_dict("list"))
261277
```
262278

263-
For **Wide & Deep recommender** and **Vowpal Wabbit** models, you can configure the scoring mode parameter using the following methods:
279+
For **Wide & Deep Recommender** and **Vowpal Wabbit** models, you can configure the scoring mode parameter by using the following methods:
264280

265281
- The parameter names are the lowercase and underscore combinations of parameter names for [Score Vowpal Wabbit Model](../algorithm-module-reference/score-vowpal-wabbit-model.md) and [Score Wide and Deep Recommender](../algorithm-module-reference/score-wide-and-deep-recommender.md);
266-
- Mode type parameter values are strings of the corresponding option names. Take **Recommender prediction kind** in the above codes as example, the value can be `'Rating Prediction'`or `'Item Recommendation'`. Other values are not allowed.
282+
- Mode-type parameter values are strings of the corresponding option names. Take **Recommender prediction kind** in the preceding codes as an example, the value can be `'Rating Prediction'`or `'Item Recommendation'`. Other values aren't allowed.
267283

268-
For **SVD recommender** trained model, the parameter names and values maybe less obvious, and you can look up the tables below to decide how to set parameters.
284+
For **SVD Recommender** trained model, the parameter names and values might be less obvious, and you can look up the following tables to decide how to set parameters.
269285

270-
| Parameter name in [Score SVD Recommender](../algorithm-module-reference/score-svd-recommender.md) | Parameter name in the entry script file |
286+
| Parameter name in **Score SVD Recommender** | Parameter name in the entry script file |
271287
| ------------------------------------------------------------ | --------------------------------------- |
272288
| Recommender prediction kind | prediction_kind |
273289
| Recommended item selection | recommended_item_selection |
274290
| Minimum size of the recommendation pool for a single user | min_recommendation_pool_size |
275291
| Maximum number of items to recommend to a user | max_recommended_item_count |
276-
| Whether to return the predicted ratings of the items along with the labels | return_ratings |
292+
| Whether to return the predicted ratings of the items along with the labels | return_ratings |
277293

278-
The following code shows you how to set parameters for an SVD recommender, which uses all six parameters to recommend rated items with predicted ratings attached.
294+
The following code shows how to set parameters for an SVD Recommender, which uses all six parameters to recommend rated items with predicted ratings attached.
279295

280296
```python
281297
score_params = dict(
@@ -294,12 +310,11 @@ score_params = dict(
294310
)
295311
```
296312

313+
## Related content
297314

298-
## Next steps
299-
300-
* [Train a model in the designer](tutorial-designer-automobile-price-train-score.md)
301-
* [Deploy models with Azure Machine Learning SDK](how-to-deploy-and-where.md)
302-
* [Troubleshoot a failed deployment](how-to-troubleshoot-deployment.md)
303-
* [Deploy to Azure Kubernetes Service](how-to-deploy-azure-kubernetes-service.md)
315+
* [Tutorial: Train a no-code regression model using designer](tutorial-designer-automobile-price-train-score.md)
316+
* [Deploy machine learning models to Azure](how-to-deploy-and-where.md)
317+
* [Troubleshooting remote model deployment](how-to-troubleshoot-deployment.md)
318+
* [Deploy a model to an Azure Kubernetes Service cluster](how-to-deploy-azure-kubernetes-service.md)
304319
* [Create client applications to consume web services](how-to-consume-web-service.md)
305-
* [Update web service](how-to-deploy-update-web-service.md)
320+
* [Update a deployed web service](how-to-deploy-update-web-service.md)

0 commit comments

Comments
 (0)