Skip to content

Commit 36aae99

Browse files
committed
switch ref to main; remove telemetry
1 parent 14b5d7a commit 36aae99

File tree

4 files changed

+29
-23
lines changed

4 files changed

+29
-23
lines changed

.openpublishing.publish.config.json

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -105,15 +105,21 @@
105105
"branch_mapping": {}
106106
},
107107
{
108-
"path_to_root": "azureai-samples-nov2024",
108+
"path_to_root": "azureai-samples-main",
109109
"url": "https://github.com/Azure-Samples/azureai-samples",
110110
"branch": "main",
111111
"branch_mapping": {}
112112
},
113+
{
114+
"path_to_root": "azureai-samples-nov2024",
115+
"url": "https://github.com/Azure-Samples/azureai-samples",
116+
"branch": "dantaylo/nov2024",
117+
"branch_mapping": {}
118+
},
113119
{
114120
"path_to_root": "azureai-samples-csharp",
115121
"url": "https://github.com/Azure-Samples/azureai-samples",
116-
"branch": "main",
122+
"branch": "dantaylo/csharp",
117123
"branch_mapping": {}
118124
},
119125
{

articles/ai-studio/tutorials/copilot-sdk-build-rag.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ If you already have a search index with data, you can skip to [Get product docum
4242

4343
Create an **assets** directory and add this example data to a **products.csv** file:
4444

45-
:::code language="csv" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/assets/products.csv":::
45+
:::code language="csv" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/assets/products.csv":::
4646

4747
## Create a search index
4848

@@ -52,19 +52,19 @@ The search index is used to store vectorized data from the embeddings model. The
5252
1. Copy and paste the following code into your **create_search_index.py** file.
5353
1. Add the code to import the required libraries, create a project client, and configure some settings:
5454

55-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/create_search_index.py" id="imports_and_config":::
55+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/create_search_index.py" id="imports_and_config":::
5656

5757
1. Now add the function to define a search index:
5858

59-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/create_search_index.py" id="create_search_index":::
59+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/create_search_index.py" id="create_search_index":::
6060

6161
1. Create the function to add a csv file to the index:
6262

63-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/create_search_index.py" id="add_csv_to_index":::
63+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/create_search_index.py" id="add_csv_to_index":::
6464

6565
1. Finally, run the functions to build the index and register it to the cloud project:
6666

67-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/create_search_index.py" id="test_create_index":::
67+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/create_search_index.py" id="test_create_index":::
6868

6969
1. From your console, log in to your Azure account and follow instructions for authenticating your account:
7070

@@ -95,23 +95,23 @@ When the chat gets a request, it searches through your data to find relevant inf
9595

9696
1. Start with code to import the required libraries, create a project client, and configure settings:
9797

98-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/get_product_documents.py" id="imports_and_config":::
98+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/get_product_documents.py" id="imports_and_config":::
9999

100100
1. Add the function to get product documents:
101101

102-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/get_product_documents.py" id="get_product_documents":::
102+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/get_product_documents.py" id="get_product_documents":::
103103

104104
1. Finally, add code to test the function when you run the script directly:
105105

106-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/get_product_documents.py" id="test_get_documents":::
106+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/get_product_documents.py" id="test_get_documents":::
107107

108108
### Create prompt template for intent mapping
109109

110110
The **get_product_documents.py** script uses a prompt template to convert the conversation to a search query. The template instructs how to extract the user's intent from the conversation.
111111
112112
Before you run the script, create the prompt template. Add the file **intent_mapping.prompty** to your **assets** folder:
113113
114-
:::code language="prompty" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/assets/intent_mapping.prompty":::
114+
:::code language="prompty" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/assets/intent_mapping.prompty":::
115115
116116
### Test the product document retrieval script
117117
@@ -130,23 +130,23 @@ Next you create custom code to add retrieval augmented generation (RAG) capabili
130130
1. In your main folder, create a new file called **chat_with_products.py**. This script retrieves product documents and generates a response to a user's question.
131131
1. Add the code to import the required libraries, create a project client, and configure settings:
132132

133-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/chat_with_products.py" id="imports_and_config":::
133+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/chat_with_products.py" id="imports_and_config":::
134134

135135
1. Create the chat function that uses the RAG capabilities:
136136

137-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/chat_with_products.py" id="chat_function":::
137+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/chat_with_products.py" id="chat_function":::
138138

139139
1. Finally, add the code to run the chat function:
140140

141-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/chat_with_products.py" id="test_function":::
141+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/chat_with_products.py" id="test_function":::
142142

143143
### Create a grounded chat prompt template
144144

145145
The **chat_with_products.py** script calls a prompt template to generate a response to the user's question. The template instructs how to generate a response based on the user's question and the retrieved documents. Create this template now.
146146

147147
In your **assets** folder, add the file **grounded_chat.prompty**:
148148

149-
:::code language="prompty" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/assets/grounded_chat.prompty":::
149+
:::code language="prompty" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/assets/grounded_chat.prompty":::
150150

151151
### Run the chat script with RAG capabilities
152152

@@ -156,7 +156,7 @@ Now that you have both the script and the template, run the script to test your
156156
python chat_with_products.py --query "I need a new tent for 4 people, what would you recommend?"
157157
```
158158

159-
To enable logging of telemetry to your project:
159+
<!-- To enable logging of telemetry to your project:
160160

161161
1. Install `azure-monitor-opentelemetry`:
162162

@@ -167,7 +167,7 @@ To enable logging of telemetry to your project:
167167
1. Add the `--enable-telemetry` flag when you use the `chat_with_products.py` script:
168168

169169
```bash
170-
python chat_with_products.py --query "I need a new tent for 4 people, what would you recommend?" --enable-telemetry
170+
python chat_with_products.py --query "I need a new tent for 4 people, what would you recommend?" --enable-telemetry -->
171171
```
172172

173173
## Clean up resources

articles/ai-studio/tutorials/copilot-sdk-create-resources.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ Install `azure-ai-projects`(preview) and `azure-ai-inference` (preview), along w
127127

128128
1. First, create a file named **requirements.txt** in your project folder. Add the following packages to the file:
129129

130-
:::code language="txt" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/requirements.txt":::
130+
:::code language="txt" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/requirements.txt":::
131131

132132
1. Install the required packages:
133133

@@ -139,7 +139,7 @@ Install `azure-ai-projects`(preview) and `azure-ai-inference` (preview), along w
139139

140140
Create a folder for your work. Create a file called **config.py** in this folder. This helper script is used in the next two parts of the tutorial series. Add the following code:
141141

142-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/config.py":::
142+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/config.py":::
143143

144144

145145
## Configure environment variables

articles/ai-studio/tutorials/copilot-sdk-evaluate.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Use the following evaluation dataset, which contains example questions and expec
4646
1. Create a file called **chat_eval_data.jsonl** in your **assets** folder.
4747
1. Paste this dataset into the file:
4848

49-
:::code language="jsonl" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/assets/chat_eval_data.jsonl":::
49+
:::code language="jsonl" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/assets/chat_eval_data.jsonl":::
5050

5151
## Evaluate with Azure AI evaluators
5252

@@ -65,15 +65,15 @@ The script also logs the evaluation results to the cloud project so that you can
6565
1. Create a file called **evaluate.py** in your main folder.
6666
1. Add the following code to import the required libraries, create a project client, and configure some settings:
6767

68-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/evaluate.py" id="imports_and_config":::
68+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/evaluate.py" id="imports_and_config":::
6969

7070
1. Add code to create a wrapper function that implements the evaluation interface for query and response evaluation:
7171

72-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/evaluate.py" id="evaluate_wrapper":::
72+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/evaluate.py" id="evaluate_wrapper":::
7373

7474
1. Finally, add code to run the evaluation, view the results locally, and gives you a link to the evaluation results in AI Foundry portal:
7575

76-
:::code language="python" source="~/azureai-samples-nov2024/scenarios/rag/custom-rag-app/evaluate.py" id="run_evaluation":::
76+
:::code language="python" source="~/azureai-samples-main/scenarios/rag/custom-rag-app/evaluate.py" id="run_evaluation":::
7777

7878
### Configure the evaluation model
7979

0 commit comments

Comments
 (0)