You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/ai-services/content-understanding/overview.md
+2-21Lines changed: 2 additions & 21 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -73,37 +73,18 @@ See [Quickstart](quickstart/use-ai-foundry.md) for more examples.
73
73
74
74
75
75
## Responsible AI
76
+
76
77
Azure AI Content Understanding is designed to guard against processing harmful content, such as graphic violence and gore, hateful speech and bullying, exploitation, abuse, and more. For more information and a full list of prohibited content, *see* our [**Transparency note**](/legal/cognitive-services/content-understanding/transparency-note?toc=/azure/ai-services/content-understanding/toc.json&bc=/azure/ai-services/content-understanding/breadcrumb/toc.json) and our [**Code of Conduct**](https://aka.ms/AI-CoC).
77
78
78
79
### Modified Content Filtering
79
80
80
-
Azure AI Content Understanding now supports disabling content filtering for approved customers. The subscription IDs with approved modified content filtering impacts the Azure AI Content Understanding output.
81
+
Azure AI Content Understanding now supports disabling content filtering for approved customers. The subscription IDs with approved modified content filtering impacts the Azure AI Content Understanding output. By default, Content Understanding employs a content filtering system that identifies specific risk categories for potentially harmful content in both submitted prompts and generated outputs. If content is flagged with a high severity level, indicating a significant potential for harm, the output is blocked. For more information on risk categories, *see*[Content filtering](../openai/concepts/content-filter.md#risk-categories).
81
82
82
83
> [!IMPORTANT]
83
84
>
84
85
> * Apply for modified content filters via this form: [Azure OpenAI Limited Access Review: Modified Content Filters](https://ncv.microsoft.com/uEfCgnITdR).
85
86
> * For more information, *see*[**Content Filtering**](../openai/concepts/content-filter.md).
86
87
87
-
By default, Content Understanding employs a content filtering system that identifies specific risk categories for potentially harmful content in both submitted prompts and generated outputs. If content is flagged with a high severity level, indicating a significant potential for harm, the output is blocked. For more information on risk categories, *see*[Content filtering](../openai/concepts/content-filter.md#risk-categories).
88
-
89
-
To disable content filtering, follow these steps:
90
-
91
-
* Complete the [Azure OpenAI Limited Access Review: Modified Content Filtering](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUMlBQNkZMR0lFRldORTdVQzQ0TEI5Q1ExOSQlQCN0PWcu) for your subscription.
92
-
93
-
* Once approved, create or update your Content Understanding analyzer to include the property `"disableContentFiltering": true`as follows:
94
-
95
-
```bash
96
-
{
97
-
"config": {
98
-
"enableFace": true,
99
-
"returnDetails": true,
100
-
"disableContentFiltering": true
101
-
}
102
-
```
103
-
104
-
105
-
106
-
107
88
## Data privacy and security
108
89
Developers using the Content Understanding service should review Microsoft's policies on customer data. For more information, visit our [**Data, protection and privacy**](https://www.microsoft.com/trust-center/privacy) page.
Copy file name to clipboardExpand all lines: articles/ai-services/content-understanding/quickstart/use-rest-api.md
+112-3Lines changed: 112 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -22,7 +22,7 @@ ms.date: 11/19/2024
22
22
23
23
## Prerequisites
24
24
25
-
To get started, you need **An active Azure subscription**. If you don't have an Azure account, you can [create a free subscription](https://azure.microsoft.com/free/).
25
+
To get started, you need **An active Azure subscription**. If you don't have an Azure account, you can [create a free subscription](https://azure.microsoft.com/free/).
26
26
27
27
* Once you have your Azure subscription, create an [Azure AI Services resource](https://portal.azure.com/#create/Microsoft.CognitiveServicesAIServices) in the Azure portal. This multi-service resource enables access to multiple Azure AI services with a single set of credentials.
28
28
@@ -83,6 +83,35 @@ First, create a JSON file named `request_body.json` with the following content:
83
83
}
84
84
```
85
85
86
+
### Content filtering
87
+
88
+
* Azure AI Content Understanding allows approved customers to disable content filtering.
89
+
90
+
* To request modified content filtering, complete the following form: [Azure OpenAI Limited Access Review: Modified Content Filters](https://ncv.microsoft.com/uEfCgnITdR).
91
+
92
+
* Once approved, create or update your `request_body.json` file to include the `"disableContentFiltering": true` property:
93
+
94
+
```json
95
+
{
96
+
"description": "Sample invoice analyzer",
97
+
"scenario": "document",
98
+
"config": {
99
+
100
+
"disableContentFiltering": true,
101
+
102
+
"enableFace": true,
103
+
"returnDetails": true,
104
+
},
105
+
"fieldSchema": {
106
+
...
107
+
}
108
+
}
109
+
110
+
```
111
+
112
+
For more information, *see*[**Content Filtering**](../../openai/concepts/content-filter.md).
113
+
114
+
86
115
# [Image](#tab/image)
87
116
88
117
To create a custom analyzer, you need to define a field schema that describes the structured data you want to extract. In the following example, we define a schema for identifying detects in images of metal plates.
@@ -107,6 +136,33 @@ First, create a JSON file named `request_body.json` with the following content:
107
136
}
108
137
```
109
138
139
+
### Content filtering
140
+
141
+
* Azure AI Content Understanding allows approved customers to disable content filtering.
142
+
143
+
* To request modified content filtering, complete the following form: [Azure OpenAI Limited Access Review: Modified Content Filters](https://ncv.microsoft.com/uEfCgnITdR).
144
+
145
+
* Once approved, create or update your `request_body.json` file to include the `"disableContentFiltering": true` property:
146
+
147
+
```json
148
+
{
149
+
"description": "Sample chart analyzer",
150
+
"scenario": "image",
151
+
"config": {
152
+
153
+
"disableContentFiltering": true,
154
+
155
+
"returnDetails": true,
156
+
},
157
+
"fieldSchema": {
158
+
...
159
+
}
160
+
}
161
+
162
+
```
163
+
164
+
For more information, *see*[**Content Filtering**](../../openai/concepts/content-filter.md).
165
+
110
166
# [Audio](#tab/audio)
111
167
112
168
To create a custom analyzer, you need to define a field schema that describes the structured data you want to extract. In the following example, we define a schema for extracting basic information from call transcripts.
@@ -147,6 +203,34 @@ First, create a JSON file named `request_body.json` with the following content:
147
203
}
148
204
```
149
205
206
+
### Content filtering
207
+
208
+
* Azure AI Content Understanding allows approved customers to disable content filtering.
209
+
210
+
* To request modified content filtering, complete the following form: [Azure OpenAI Limited Access Review: Modified Content Filters](https://ncv.microsoft.com/uEfCgnITdR).
211
+
212
+
* Once approved, create or update your `request_body.json` file to include the `"disableContentFiltering": true` property:
213
+
214
+
```json
215
+
{
216
+
"description": "Sample call transcript analyzer",
217
+
"scenario": "callCenter",
218
+
"config": {
219
+
220
+
"disableContentFiltering": true,
221
+
222
+
"returnDetails": true,
223
+
"locales": ["en-US"]
224
+
},
225
+
"fieldSchema": {
226
+
...
227
+
}
228
+
}
229
+
230
+
```
231
+
232
+
For more information, *see*[**Content Filtering**](../../openai/concepts/content-filter.md).
233
+
150
234
# [Video](#tab/video)
151
235
152
236
To create a custom analyzer, you need to define a field schema that describes the structured data you want to extract. In the following example, we define a schema for extracting basic information from marketing videos.
@@ -171,6 +255,31 @@ First, create a JSON file named `request_body.json` with the following content:
171
255
}
172
256
}
173
257
```
258
+
### Content filtering
259
+
260
+
* Azure AI Content Understanding allows approved customers to disable content filtering.
261
+
262
+
* To request modified content filtering, complete the following form: [Azure OpenAI Limited Access Review: Modified Content Filters](https://ncv.microsoft.com/uEfCgnITdR).
263
+
264
+
* Once approved, create or update your `request_body.json` file to include the `"disableContentFiltering": true` property:
265
+
266
+
```json
267
+
{
268
+
"description": "Sample marketing video analyzer",
269
+
"scenario": "videoShot",
270
+
"config": {
271
+
272
+
"disableContentFiltering": true,
273
+
274
+
},
275
+
"fieldSchema": {
276
+
...
277
+
}
278
+
}
279
+
280
+
```
281
+
282
+
For more information, *see*[**Content Filtering**](../../openai/concepts/content-filter.md).
174
283
175
284
---
176
285
@@ -540,8 +649,8 @@ The 200 (`OK`) JSON response includes a `status` field indicating the status of
540
649
541
650
---
542
651
543
-
## Next steps
652
+
## Next steps
544
653
545
-
* In this quickstart, you learned how to call the [REST API](/rest/api/contentunderstanding/operation-groups?view=rest-contentunderstanding-2024-12-01-preview&preserve-view=true) to create a custom analyzer. For a user experience, try [**Azure AI Foundry portal**](https://ai.azure.com/).
654
+
* In this quickstart, you learned how to call the [REST API](/rest/api/contentunderstanding/operation-groups?view=rest-contentunderstanding-2024-12-01-preview&preserve-view=true) to create a custom analyzer. For a user experience, try [**Azure AI Foundry portal**](https://ai.azure.com/).
0 commit comments