@@ -109,8 +109,8 @@ ml_client = MLClient(
109
109
```
110
110
111
111
** SDK Reference:**
112
- - [ MLClient] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.mlclient)
113
- - [ DefaultAzureCredential] ( https://learn.microsoft.com /python/api/azure-identity/azure.identity.defaultazurecredential)
112
+ - [ MLClient] ( /python/api/azure-ai-ml/azure.ai.ml.mlclient )
113
+ - [ DefaultAzureCredential] ( /python/api/azure-identity/azure.identity.defaultazurecredential )
114
114
115
115
> [ !NOTE]
116
116
> Creating MLClient won't connect to the workspace. The client initialization is lazy, it will wait for the first time it needs to make a call (this will happen in the next code cell).
@@ -126,7 +126,7 @@ print(ws.location, ":", ws.resource_group)
126
126
```
127
127
128
128
** SDK Reference:**
129
- - [ WorkspaceOperations.get] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.operations.workspaceoperations#azure-ai-ml-operations-workspaceoperations-get)
129
+ - [ WorkspaceOperations.get] ( /python/api/azure-ai-ml/azure.ai.ml.operations.workspaceoperations#azure-ai-ml-operations-workspaceoperations-get )
130
130
131
131
## Access the registered data asset
132
132
@@ -142,7 +142,7 @@ print(f"Data asset URI: {credit_data.path}")
142
142
```
143
143
144
144
** SDK Reference:**
145
- - [ DataOperations.get] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.operations.dataoperations#azure-ai-ml-operations-dataoperations-get)
145
+ - [ DataOperations.get] ( /python/api/azure-ai-ml/azure.ai.ml.operations.dataoperations#azure-ai-ml-operations-dataoperations-get )
146
146
147
147
## Create a job environment for pipeline steps
148
148
@@ -210,8 +210,8 @@ print(
210
210
```
211
211
212
212
** SDK Reference:**
213
- - [ Environment] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.entities.environment)
214
- - [ EnvironmentOperations.create_or_update] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.operations.environmentoperations#azure-ai-ml-operations-environmentoperations-create-or-update)
213
+ - [ Environment] ( /python/api/azure-ai-ml/azure.ai.ml.entities.environment )
214
+ - [ EnvironmentOperations.create_or_update] ( /python/api/azure-ai-ml/azure.ai.ml.operations.environmentoperations#azure-ai-ml-operations-environmentoperations-create-or-update )
215
215
216
216
## Build the training pipeline
217
217
@@ -333,9 +333,9 @@ data_prep_component = command(
333
333
```
334
334
335
335
** SDK Reference:**
336
- - [ command] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml#azure-ai-ml-command)
337
- - [ Input] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.input)
338
- - [ Output] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.output)
336
+ - [ command] ( /python/api/azure-ai-ml/azure.ai.ml#azure-ai-ml-command )
337
+ - [ Input] ( /python/api/azure-ai-ml/azure.ai.ml.input )
338
+ - [ Output] ( /python/api/azure-ai-ml/azure.ai.ml.output )
339
339
340
340
Optionally, register the component in the workspace for future reuse.
341
341
@@ -352,7 +352,7 @@ print(
352
352
```
353
353
354
354
** SDK Reference:**
355
- - [ MLClient.create_or_update] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.mlclient#azure-ai-ml-mlclient-create-or-update)
355
+ - [ MLClient.create_or_update] ( /python/api/azure-ai-ml/azure.ai.ml.mlclient#azure-ai-ml-mlclient-create-or-update )
356
356
357
357
### Create component 2: training (using yaml definition)
358
358
@@ -528,8 +528,8 @@ print(
528
528
```
529
529
530
530
** SDK Reference:**
531
- - [ load_component] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml#azure-ai-ml-load-component)
532
- - [ MLClient.create_or_update] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.mlclient#azure-ai-ml-mlclient-create-or-update)
531
+ - [ load_component] ( /python/api/azure-ai-ml/azure.ai.ml#azure-ai-ml-load-component )
532
+ - [ MLClient.create_or_update] ( /python/api/azure-ai-ml/azure.ai.ml.mlclient#azure-ai-ml-mlclient-create-or-update )
533
533
534
534
### Create the pipeline from components
535
535
@@ -584,9 +584,9 @@ def credit_defaults_pipeline(
584
584
```
585
585
586
586
** SDK Reference:**
587
- - [ dsl.pipeline] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.dsl#azure-ai-ml-dsl-pipeline)
588
- - [ Input] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.input)
589
- - [ Output] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.output)
587
+ - [ dsl.pipeline] ( /python/api/azure-ai-ml/azure.ai.ml.dsl#azure-ai-ml-dsl-pipeline )
588
+ - [ Input] ( /python/api/azure-ai-ml/azure.ai.ml.input )
589
+ - [ Output] ( /python/api/azure-ai-ml/azure.ai.ml.output )
590
590
591
591
Now use your pipeline definition to instantiate a pipeline with your dataset, split rate of choice and the name you picked for your model.
592
592
@@ -604,7 +604,7 @@ pipeline = credit_defaults_pipeline(
604
604
```
605
605
606
606
** SDK Reference:**
607
- - [ Input] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.input)
607
+ - [ Input] ( /python/api/azure-ai-ml/azure.ai.ml.input )
608
608
609
609
## Submit the job
610
610
@@ -626,8 +626,8 @@ ml_client.jobs.stream(pipeline_job.name)
626
626
```
627
627
628
628
** SDK Reference:**
629
- - [ JobOperations.create_or_update] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.operations.joboperations#azure-ai-ml-operations-joboperations-create-or-update)
630
- - [ JobOperations.stream] ( https://learn.microsoft.com /python/api/azure-ai-ml/azure.ai.ml.operations.joboperations#azure-ai-ml-operations-joboperations-stream)
629
+ - [ JobOperations.create_or_update] ( /python/api/azure-ai-ml/azure.ai.ml.operations.joboperations#azure-ai-ml-operations-joboperations-create-or-update )
630
+ - [ JobOperations.stream] ( /python/api/azure-ai-ml/azure.ai.ml.operations.joboperations#azure-ai-ml-operations-joboperations-stream )
631
631
632
632
You can track the progress of your pipeline, by using the link generated in the previous cell. When you first select this link, you might see that the pipeline is still running. Once it's complete, you can examine each component's results.
633
633
0 commit comments