Skip to content

Commit 5db8348

Browse files
committed
edits
1 parent 462a63a commit 5db8348

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-auto-train-forecast.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ Add more detail to this configuration in subsequent sections of this article. In
127127

128128
---
129129

130-
You specify [validation data](concept-automated-ml.md#prepare-training-validation-and-test-data) in a similar way. Create an `MLTable` object and specify a validation data input. Alternatively, if you don't supply validation data, AutoML automatically creates cross-validation splits from your training data to use for model selection. For more information, see the following resources:
130+
You specify [validation data](concept-automated-ml.md#training-validation-and-test-data) in a similar way. Create an `MLTable` object and specify a validation data input. Alternatively, if you don't supply validation data, AutoML automatically creates cross-validation splits from your training data to use for model selection. For more information, see the following resources:
131131

132132
- [Select forecasting models](./concept-automl-forecasting-sweeping.md#model-selection-in-automl)
133133
- [Set training data length requirements](./concept-automl-forecasting-methods.md#data-length-requirements)
@@ -139,7 +139,7 @@ AutoML uses Azure Machine Learning Compute, which is a fully managed compute res
139139

140140
# [Python SDK](#tab/python)
141141

142-
[!Notebook Python[] (~/azureml-examples-main/sdk/python/jobs/configuration.ipynb?name=create-cpu-compute)]
142+
[!notebook-python[] (~/azureml-examples-main/sdk/python/jobs/configuration.ipynb?name=create-cpu-compute)]
143143

144144
# [Azure CLI](#tab/cli)
145145

@@ -1004,7 +1004,7 @@ jobs:
10041004
evaluation_result: ${{parent.outputs.metrics_result}}
10051005
```
10061006

1007-
AutoML requires training data in [MLTable format](#training-and-validation-data) for AutoML.
1007+
AutoML requires training data in [MLTable format](#prepare-training-and-validation-data) for AutoML.
10081008

10091009
Launch the pipeline run by using the following command. The pipeline configuration is at the path *./automl-forecasting-pipeline.yml*:
10101010

0 commit comments

Comments
 (0)