Skip to content

Commit 678650c

Browse files
committed
added ref links
1 parent 0518780 commit 678650c

File tree

1 file changed

+38
-0
lines changed

1 file changed

+38
-0
lines changed

articles/machine-learning/tutorial-pipeline-python-sdk.md

Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -108,6 +108,10 @@ ml_client = MLClient(
108108
)
109109
```
110110

111+
**Reference links:**
112+
- [MLClient](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.mlclient)
113+
- [DefaultAzureCredential](https://learn.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential)
114+
111115
> [!NOTE]
112116
> Creating MLClient won't connect to the workspace. The client initialization is lazy, it will wait for the first time it needs to make a call (this will happen in the next code cell).
113117
@@ -121,6 +125,9 @@ ws = ml_client.workspaces.get(WS_NAME)
121125
print(ws.location, ":", ws.resource_group)
122126
```
123127

128+
**Reference links:**
129+
- [WorkspaceOperations.get](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.operations.workspaceoperations#azure-ai-ml-operations-workspaceoperations-get)
130+
124131
## Access the registered data asset
125132

126133
Start by getting the data that you previously registered in [Tutorial: Upload, access and explore your data in Azure Machine Learning](tutorial-explore-data.md).
@@ -134,6 +141,9 @@ credit_data = ml_client.data.get(name="credit-card", version="initial")
134141
print(f"Data asset URI: {credit_data.path}")
135142
```
136143

144+
**Reference links:**
145+
- [DataOperations.get](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.operations.dataoperations#azure-ai-ml-operations-dataoperations-get)
146+
137147
## Create a job environment for pipeline steps
138148

139149
So far, you've created a development environment on the compute instance, your development machine. You also need an environment to use for each step of the pipeline. Each step can have its own environment, or you can use some common environments for multiple steps.
@@ -199,6 +209,10 @@ print(
199209
)
200210
```
201211

212+
**Reference links:**
213+
- [Environment](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.entities.environment)
214+
- [EnvironmentOperations.create_or_update](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.operations.environmentoperations#azure-ai-ml-operations-environmentoperations-create-or-update)
215+
202216
## Build the training pipeline
203217

204218
Now that you have all assets required to run your pipeline, it's time to build the pipeline itself.
@@ -318,6 +332,11 @@ data_prep_component = command(
318332
)
319333
```
320334

335+
**Reference links:**
336+
- [command](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml#azure-ai-ml-command)
337+
- [Input](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.input)
338+
- [Output](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.output)
339+
321340
Optionally, register the component in the workspace for future reuse.
322341

323342

@@ -332,6 +351,9 @@ print(
332351
)
333352
```
334353

354+
**Reference links:**
355+
- [MLClient.create_or_update](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.mlclient#azure-ai-ml-mlclient-create-or-update)
356+
335357
### Create component 2: training (using yaml definition)
336358

337359
The second component that you create consumes the training and test data, train a tree based model and return the output model. Use Azure Machine Learning logging capabilities to record and visualize the learning progress.
@@ -505,6 +527,10 @@ print(
505527
)
506528
```
507529

530+
**Reference links:**
531+
- [load_component](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml#azure-ai-ml-load-component)
532+
- [MLClient.create_or_update](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.mlclient#azure-ai-ml-mlclient-create-or-update)
533+
508534
### Create the pipeline from components
509535

510536
Now that both your components are defined and registered, you can start implementing the pipeline.
@@ -557,6 +583,11 @@ def credit_defaults_pipeline(
557583
}
558584
```
559585

586+
**Reference links:**
587+
- [dsl.pipeline](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.dsl#azure-ai-ml-dsl-pipeline)
588+
- [Input](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.input)
589+
- [Output](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.output)
590+
560591
Now use your pipeline definition to instantiate a pipeline with your dataset, split rate of choice and the name you picked for your model.
561592

562593

@@ -572,6 +603,9 @@ pipeline = credit_defaults_pipeline(
572603
)
573604
```
574605

606+
**Reference links:**
607+
- [Input](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.input)
608+
575609
## Submit the job
576610

577611
It's now time to submit the job to run in Azure Machine Learning. This time you use `create_or_update` on `ml_client.jobs`.
@@ -591,6 +625,10 @@ pipeline_job = ml_client.jobs.create_or_update(
591625
ml_client.jobs.stream(pipeline_job.name)
592626
```
593627

628+
**Reference links:**
629+
- [JobOperations.create_or_update](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.operations.joboperations#azure-ai-ml-operations-joboperations-create-or-update)
630+
- [JobOperations.stream](https://learn.microsoft.com/python/api/azure-ai-ml/azure.ai.ml.operations.joboperations#azure-ai-ml-operations-joboperations-stream)
631+
594632
You can track the progress of your pipeline, by using the link generated in the previous cell. When you first select this link, you might see that the pipeline is still running. Once it's complete, you can examine each component's results.
595633

596634
Double-click the **Train Credit Defaults Model** component.

0 commit comments

Comments
 (0)