@@ -11,8 +11,8 @@ ms.custom:
1111ms.topic : how-to
1212ms.author : sgilley
1313author : sdgilley
14- ms.reviewer : vijetaj
15- ms.date : 10/23/2023
14+ ms.reviewer : bijuv
15+ ms.date : 10/02/2024
1616---
1717
1818# Model training on serverless compute
@@ -102,7 +102,7 @@ When you [view your usage and quota in the Azure portal](how-to-manage-quotas.md
102102 )
103103 job = command(
104104 command = " echo 'hello world'" ,
105- environment = " AzureML- sklearn-1.0-ubuntu20.04-py38-cpu@ latest" ,
105+ environment = " azureml://registries/azureml/environments/ sklearn-1.5/labels/ latest" ,
106106 identity = UserIdentityConfiguration(),
107107 )
108108 # submit the command job
@@ -111,15 +111,25 @@ When you [view your usage and quota in the Azure portal](how-to-manage-quotas.md
111111
112112 # [Azure CLI](#tab/cli)
113113
114+ Create a file named hello.yaml with the following content:
115+
114116 ```yml
115117 $ schema: https:// azuremlschemas.azureedge.net/ latest/ commandJob.schema.json
116118 command: echo " hello world"
117119 environment:
118- image: azureml:AzureML - sklearn - 1.0 - ubuntu20.04 - py38 - cpu @ latest
120+ image: library / python: latest
119121 identity:
120122 type : user_identity
121123 ```
122124
125+ Submit the job with the following command:
126+
127+ ```bash
128+ az ml job create -- file hello.yaml -- resource- group my- resource- group -- workspace- name my- workspace
129+ ```
130+
131+ The rest of the CLI examples show variations of the hello.yaml file . Run each of them in the same way.
132+
123133 -- -
124134
125135* ** User- assigned managed identity** : When you have a workspace configured with [user- assigned managed identity](how- to- identity- based- service- authentication.md# workspace), you can use that identity with the serverless job for storage access. To access secrets, see [Use authentication credential secrets in Azure Machine Learning jobs](how-to-use-secrets-in-runs.md).
@@ -143,7 +153,7 @@ When you [view your usage and quota in the Azure portal](how-to-manage-quotas.md
143153 )
144154 job = command(
145155 command = " echo 'hello world'" ,
146- environment = " AzureML- sklearn-1.0-ubuntu20.04-py38-cpu@ latest" ,
156+ environment = " azureml://registries/azureml/environments/ sklearn-1.5/labels/ latest" ,
147157 identity = ManagedIdentityConfiguration(),
148158 )
149159 # submit the command job
@@ -157,7 +167,7 @@ When you [view your usage and quota in the Azure portal](how-to-manage-quotas.md
157167 $ schema: https:// azuremlschemas.azureedge.net/ latest/ commandJob.schema.json
158168 command: echo " hello world"
159169 environment:
160- image: azureml:AzureML - sklearn - 1.0 - ubuntu20.04 - py38 - cpu @ latest
170+ image: library / python: latest
161171 identity:
162172 type : managed
163173 ````
@@ -189,7 +199,7 @@ ml_client = MLClient(
189199)
190200job = command(
191201 command = " echo 'hello world'" ,
192- environment = " AzureML- sklearn-1.0-ubuntu20.04-py38-cpu@ latest" ,
202+ environment = " azureml://registries/azureml/environments/ sklearn-1.5/labels/ latest" ,
193203)
194204# submit the command job
195205ml_client.create_or_update(job)
@@ -235,7 +245,7 @@ You can override these defaults. If you want to specify the VM type or number o
235245 )
236246 job = command(
237247 command = " echo 'hello world'" ,
238- environment = " AzureML- sklearn-1.0-ubuntu20.04-py38-cpu@ latest" ,
248+ environment = " azureml://registries/azureml/environments/ sklearn-1.5/labels/ latest" ,
239249 resources = JobResourceConfiguration(instance_type = " Standard_NC24" , instance_count = 4 )
240250 )
241251 # submit the command job
@@ -274,7 +284,7 @@ You can override these defaults. If you want to specify the VM type or number o
274284 )
275285 job = command(
276286 command = " echo 'hello world'" ,
277- environment = " AzureML- sklearn-1.0-ubuntu20.04-py38-cpu@ latest" ,
287+ environment = " azureml://registries/azureml/environments/ sklearn-1.5/labels/ latest" ,
278288 queue_settings = {
279289 " job_tier" : " spot"
280290 }
@@ -315,7 +325,7 @@ ml_client = MLClient(
315325)
316326job = command(
317327 command = " echo 'hello world'" ,
318- environment = " AzureML- sklearn-1.0-ubuntu20.04-py38-cpu@ latest" ,
328+ environment = " azureml://registries/azureml/environments/ sklearn-1.5/labels/ latest" ,
319329 identity = UserIdentityConfiguration(),
320330 queue_settings = {
321331 " job_tier" : " Standard"
@@ -331,7 +341,7 @@ ml_client.create_or_update(job)
331341$ schema: https:// azuremlschemas.azureedge.net/ latest/ commandJob.schema.json
332342command: echo " hello world"
333343environment:
334- image: azureml:AzureML - sklearn - 1.0 - ubuntu20.04 - py38 - cpu @ latest
344+ image: library / python: latest
335345queue_settings:
336346 job_tier: Standard # Possible Values are Standard, Spot. Default is Standard.
337347identity:
0 commit comments