|
| 1 | +--- |
| 2 | +title: 'How to use the Custom Bing Search with Azure AI Agent Service tool' |
| 3 | +titleSuffix: Azure OpenAI |
| 4 | +description: Find samples to ground Azure AI Agents using Custom Bing Search results. |
| 5 | +services: cognitive-services |
| 6 | +manager: nitinme |
| 7 | +ms.service: azure-ai-agent-service |
| 8 | +ms.topic: how-to |
| 9 | +ms.date: 04/15/2025 |
| 10 | +author: aahill |
| 11 | +ms.author: aahi |
| 12 | +ms.custom: azure-ai-agents |
| 13 | +zone_pivot_groups: selection-bing-custom-grounding |
| 14 | +--- |
| 15 | + |
| 16 | +# How to use Grounding with Bing Custom Search |
| 17 | + |
| 18 | + |
| 19 | +::: zone pivot="portal" |
| 20 | + |
| 21 | + |
| 22 | +1. Go to the [Azure AI Foundry portal](https://ai.azure.com/) and use the Grounding with Bing Custom Search tool in your agent. |
| 23 | + |
| 24 | + 1. Select the agent you created. |
| 25 | + |
| 26 | + 1. Select to add a knowledge tool. |
| 27 | + |
| 28 | + 1. Select the **Grounding with Bing Custom Search** tool |
| 29 | + |
| 30 | + 1. Select to create a new connection or use an existing connection |
| 31 | + |
| 32 | + 1. For new connection, select your Grounding with Bing Custom Search resource. |
| 33 | + |
| 34 | + 1. Once you have connected to a resource, select the configuration name. |
| 35 | + |
| 36 | + 1. Save the tool and start chatting with your agent. |
| 37 | +:::zone-end |
| 38 | + |
| 39 | +::: zone pivot="javascript" |
| 40 | + |
| 41 | +## Step 1: Create a project client |
| 42 | + |
| 43 | +Create a client object, which will contain the connection string for connecting to your AI project and other resources. |
| 44 | + |
| 45 | +```javascript |
| 46 | +const { AIProjectsClient, ToolUtility, isOutputOfType } = require("@azure/ai-projects"); |
| 47 | +const { delay } = require("@azure/core-util"); |
| 48 | +const { DefaultAzureCredential } = require("@azure/identity"); |
| 49 | + |
| 50 | +require("dotenv/config"); |
| 51 | + |
| 52 | +const connectionString = |
| 53 | + process.env["AZURE_AI_PROJECTS_CONNECTION_STRING"] || "<project connection string>"; |
| 54 | + |
| 55 | +// Create an Azure AI Client from a connection string, copied from your AI Foundry project. |
| 56 | +// At the moment, it should be in the format "<HostName>;<AzureSubscriptionId>;<ResourceGroup>;<HubName>" |
| 57 | +// Customer needs to login to Azure subscription via Azure CLI and set the environment variables |
| 58 | +const client = AIProjectsClient.fromConnectionString( |
| 59 | + connectionString || "", |
| 60 | + new DefaultAzureCredential(), |
| 61 | +); |
| 62 | +``` |
| 63 | + |
| 64 | + |
| 65 | +## Step 2: Create an Agent with the Grounding with Bing search tool enabled |
| 66 | + |
| 67 | +To make the Grounding with Bing search tool available to your agent, use a connection to initialize the tool and attach it to the agent. You can find your connection in the **connected resources** section of your project in the [Azure AI Foundry portal](https://ai.azure.com/). |
| 68 | + |
| 69 | +```javascript |
| 70 | +const bingCustomSearchConnection = await client.connections.getConnection( |
| 71 | + process.env["BING_CUSTOM_SEARCH"] || "<connection-name>", |
| 72 | +); |
| 73 | +console.log(`Bing custom search connection ID:`, bingCustomSearchConnection.id); |
| 74 | + |
| 75 | +// Initialize agent bing custom search tool with the connection id |
| 76 | +const bingCustomSearchTool = ToolUtility.createBingCustomSearchTool([ |
| 77 | + { |
| 78 | + connectionId: bingCustomSearchConnection.id, |
| 79 | + instanceName: bingCustomSearchConnection.name, |
| 80 | + }, |
| 81 | +]); |
| 82 | + |
| 83 | +// Create agent with the bing tool and process assistant run |
| 84 | +const agent = await client.agents.createAgent("gpt-4o", { |
| 85 | + name: "my-agent", |
| 86 | + instructions: |
| 87 | + "You are a customer support chatbot. Use the tools provided and your knowledge base to best respond to customer queries", |
| 88 | + tools: [bingCustomSearchTool.definition] |
| 89 | +}); |
| 90 | +console.log(`Created agent, agent ID : ${agent.id}`); |
| 91 | +``` |
| 92 | + |
| 93 | +## Step 3: Create a thread |
| 94 | + |
| 95 | +```javascript |
| 96 | +// create a thread |
| 97 | +const thread = await client.agents.createThread(); |
| 98 | + |
| 99 | +// add a message to thread |
| 100 | +await client.agents.createMessage( |
| 101 | + thread.id, { |
| 102 | + role: "user", |
| 103 | + content: "What is the weather in Seattle?", |
| 104 | +}); |
| 105 | +``` |
| 106 | + |
| 107 | +## Step 4: Create a run and check the output |
| 108 | + |
| 109 | +Create a run and observe that the model uses the Grounding with Bing Search tool to provide a response to the user's question. |
| 110 | + |
| 111 | + |
| 112 | +```javascript |
| 113 | + |
| 114 | + // create a run |
| 115 | + const streamEventMessages = await client.agents.createRun(thread.id, agent.id).stream(); |
| 116 | + |
| 117 | + for await (const eventMessage of streamEventMessages) { |
| 118 | + switch (eventMessage.event) { |
| 119 | + case RunStreamEvent.ThreadRunCreated: |
| 120 | + break; |
| 121 | + case MessageStreamEvent.ThreadMessageDelta: |
| 122 | + { |
| 123 | + const messageDelta = eventMessage.data; |
| 124 | + messageDelta.delta.content.forEach((contentPart) => { |
| 125 | + if (contentPart.type === "text") { |
| 126 | + const textContent = contentPart; |
| 127 | + const textValue = textContent.text?.value || "No text"; |
| 128 | + } |
| 129 | + }); |
| 130 | + } |
| 131 | + break; |
| 132 | + |
| 133 | + case RunStreamEvent.ThreadRunCompleted: |
| 134 | + break; |
| 135 | + case ErrorEvent.Error: |
| 136 | + console.log(`An error occurred. Data ${eventMessage.data}`); |
| 137 | + break; |
| 138 | + case DoneEvent.Done: |
| 139 | + break; |
| 140 | + } |
| 141 | + } |
| 142 | + |
| 143 | + // Print the messages from the agent |
| 144 | + const messages = await client.agents.listMessages(thread.id); |
| 145 | + |
| 146 | + // Messages iterate from oldest to newest |
| 147 | + // messages[0] is the most recent |
| 148 | + for (let i = messages.data.length - 1; i >= 0; i--) { |
| 149 | + const m = messages.data[i]; |
| 150 | + if (isOutputOfType<MessageTextContentOutput>(m.content[0], "text")) { |
| 151 | + const textContent = m.content[0]; |
| 152 | + console.log(`${textContent.text.value}`); |
| 153 | + console.log(`---------------------------------`); |
| 154 | + } |
| 155 | + } |
| 156 | +``` |
| 157 | +
|
| 158 | +:::zone-end |
| 159 | +
|
| 160 | +::: zone pivot="python" |
| 161 | +
|
| 162 | +## Step 1: Create a project client |
| 163 | +
|
| 164 | +Create a client object, which will contain the connection string for connecting to your AI project and other resources. |
| 165 | +
|
| 166 | +```python |
| 167 | + |
| 168 | +import os |
| 169 | +from azure.ai.projects import AIProjectClient |
| 170 | +from azure.ai.projects.models import MessageRole, BingCustomSearchTool |
| 171 | +from azure.identity import DefaultAzureCredential |
| 172 | + |
| 173 | + |
| 174 | +# Create an Azure AI Client from a connection string, copied from your Azure AI Foundry project. |
| 175 | +# At the moment, it should be in the format "<HostName>;<AzureSubscriptionId>;<ResourceGroup>;<HubName>" |
| 176 | +# Customer needs to login to Azure subscription via Azure CLI and set the environment variables |
| 177 | + |
| 178 | +project_client = AIProjectClient.from_connection_string( |
| 179 | + credential=DefaultAzureCredential(), |
| 180 | + conn_str=os.environ["PROJECT_CONNECTION_STRING"], |
| 181 | +) |
| 182 | + |
| 183 | +``` |
| 184 | +
|
| 185 | +
|
| 186 | +## Step 2: Create an Agent with the Grounding with Bing search tool enabled |
| 187 | +
|
| 188 | +To make the Grounding with Bing search tool available to your agent, use a connection to initialize the tool and attach it to the agent. You can find your connection in the **connected resources** section of your project in the [Azure AI Foundry portal](https://ai.azure.com/). |
| 189 | +
|
| 190 | +```python |
| 191 | +bing_custom_connection = project_client.connections.get(connection_name=os.environ["BING_CUSTOM_CONNECTION_NAME"]) |
| 192 | +conn_id = bing_custom_connection.id |
| 193 | + |
| 194 | +print(conn_id) |
| 195 | + |
| 196 | +# Initialize agent bing custom search tool and add the connection id |
| 197 | +bing_custom_tool = BingCustomSearchTool(connection_id=conn_id, instance_name="<config_instance_name>") |
| 198 | + |
| 199 | +# Create agent with the bing custom search tool and process assistant run |
| 200 | +with project_client: |
| 201 | + agent = project_client.agents.create_agent( |
| 202 | + model=os.environ["MODEL_DEPLOYMENT_NAME"], |
| 203 | + name="my-agent", |
| 204 | + instructions="You are a helpful agent", |
| 205 | + tools=bing_custom_tool.definitions |
| 206 | + ) |
| 207 | + print(f"Created agent, ID: {agent.id}") |
| 208 | +``` |
| 209 | +
|
| 210 | +## Step 3: Create a thread |
| 211 | +
|
| 212 | +```python |
| 213 | +# Create thread for communication |
| 214 | +thread = project_client.agents.create_thread() |
| 215 | +print(f"Created thread, ID: {thread.id}") |
| 216 | + |
| 217 | +# Create message to thread |
| 218 | +message = project_client.agents.create_message( |
| 219 | + thread_id=thread.id, |
| 220 | + role="user", |
| 221 | + content="What is the top news today", |
| 222 | +) |
| 223 | +print(f"Created message, ID: {message.id}") |
| 224 | +``` |
| 225 | +
|
| 226 | +## Step 4: Create a run and check the output |
| 227 | +
|
| 228 | +Create a run and observe that the model uses the Grounding with Bing Search tool to provide a response to the user's question. |
| 229 | +
|
| 230 | +
|
| 231 | +```python |
| 232 | +# Create and process agent run in thread with tools |
| 233 | +run = project_client.agents.create_and_process_run(thread_id=thread.id, agent_id=agent.id) |
| 234 | +print(f"Run finished with status: {run.status}") |
| 235 | + |
| 236 | +if run.status == "failed": |
| 237 | + print(f"Run failed: {run.last_error}") |
| 238 | + |
| 239 | +# Delete the assistant when done |
| 240 | +project_client.agents.delete_agent(agent.id) |
| 241 | +print("Deleted agent") |
| 242 | + |
| 243 | +# Print the Agent's response message with optional citation |
| 244 | +response_message = project_client.agents.list_messages(thread_id=thread.id).get_last_message_by_role( |
| 245 | + MessageRole.AGENT |
| 246 | +) |
| 247 | +if response_message: |
| 248 | + for text_message in response_message.text_messages: |
| 249 | + print(f"Agent response: {text_message.text.value}") |
| 250 | + for annotation in response_message.url_citation_annotations: |
| 251 | + print(f"URL Citation: [{annotation.url_citation.title}]({annotation.url_citation.url})") |
| 252 | +``` |
| 253 | +
|
| 254 | +
|
| 255 | +:::zone-end |
0 commit comments