Skip to content

Commit 7fa2c0c

Browse files
authored
Merge pull request #172 from pdhotems/pdhote/model-monitoring-doc-update
add information about enable/disable model monitor signal alerts
2 parents dd85494 + 2863862 commit 7fa2c0c

File tree

1 file changed

+13
-7
lines changed

1 file changed

+13
-7
lines changed

articles/machine-learning/how-to-monitor-model-performance.md

Lines changed: 13 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -207,6 +207,8 @@ To enable feature importance with any of your signals (such as data drift or dat
207207

208208
After enabling feature importance, you'll see a feature importance for each feature you're monitoring in the Azure Machine Learning model monitoring studio UI.
209209

210+
You can enable/disable alerts for each signal by setting `alert_enabled` property while using SDK or CLI.
211+
210212
You can use Azure CLI, the Python SDK, or the studio for advanced setup of model monitoring.
211213

212214
# [Azure CLI](#tab/azure-cli)
@@ -316,7 +318,8 @@ metric_thresholds = DataDriftMetricThreshold(
316318
advanced_data_drift = DataDriftSignal(
317319
reference_data=reference_data_training,
318320
features=features,
319-
metric_thresholds=metric_thresholds
321+
metric_thresholds=metric_thresholds,
322+
alert_enabled=True
320323
)
321324

322325
# create an advanced prediction drift signal
@@ -328,7 +331,8 @@ metric_thresholds = PredictionDriftMetricThreshold(
328331

329332
advanced_prediction_drift = PredictionDriftSignal(
330333
reference_data=reference_data_training,
331-
metric_thresholds=metric_thresholds
334+
metric_thresholds=metric_thresholds,
335+
alert_enabled=True
332336
)
333337

334338
# create an advanced data quality signal
@@ -347,7 +351,7 @@ advanced_data_quality = DataQualitySignal(
347351
reference_data=reference_data_training,
348352
features=features,
349353
metric_thresholds=metric_thresholds,
350-
alert_enabled=False
354+
alert_enabled=True
351355
)
352356

353357
# create feature attribution drift signal
@@ -356,7 +360,7 @@ metric_thresholds = FeatureAttributionDriftMetricThreshold(normalized_discounted
356360
feature_attribution_drift = FeatureAttributionDriftSignal(
357361
reference_data=reference_data_training,
358362
metric_thresholds=metric_thresholds,
359-
alert_enabled=False
363+
alert_enabled=True
360364
)
361365

362366
# put all monitoring signals in a dictionary
@@ -648,7 +652,8 @@ metric_thresholds = ModelPerformanceMetricThreshold(
648652
model_performance = ModelPerformanceSignal(
649653
production_data=production_data,
650654
reference_data=reference_data_ground_truth,
651-
metric_thresholds=metric_thresholds
655+
metric_thresholds=metric_thresholds,
656+
alert_enabled=True
652657
)
653658

654659
# put all monitoring signals in a dictionary
@@ -844,7 +849,8 @@ advanced_data_drift = DataDriftSignal(
844849
production_data=production_data,
845850
reference_data=reference_data_training,
846851
features=features,
847-
metric_thresholds=metric_thresholds
852+
metric_thresholds=metric_thresholds,
853+
alert_enabled=True
848854
)
849855

850856

@@ -864,7 +870,7 @@ advanced_data_quality = DataQualitySignal(
864870
reference_data=reference_data_training,
865871
features=features,
866872
metric_thresholds=metric_thresholds,
867-
alert_enabled="False"
873+
alert_enabled=True
868874
)
869875

870876
# put all monitoring signals in a dictionary

0 commit comments

Comments
 (0)