Skip to content

Commit 86d029a

Browse files
authored
Merge pull request #3790 from MicrosoftDocs/main
3/27/2025 PM Publish
2 parents 4e048f1 + 9fc409f commit 86d029a

File tree

8 files changed

+21
-9
lines changed

8 files changed

+21
-9
lines changed
-2.44 MB
Loading
59.5 KB
Loading

articles/ai-services/document-intelligence/prebuilt/layout.md

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ author: laujan
66
manager: nitinme
77
ms.service: azure-ai-document-intelligence
88
ms.topic: conceptual
9-
ms.date: 03/17/2025
9+
ms.date: 03/27/2025
1010
ms.author: lajanuar
1111
---
1212

@@ -120,6 +120,11 @@ The layout model extracts structural elements from your documents. To follow are
120120
* [**Figures**](#figures)
121121
* [**Sections**](#sections)
122122

123+
Run the sample layout document analysis within [Document Intelligence Studio](https://documentintelligence.ai.azure.com/studio), then navigate to the results tab to access the full JSON output.
124+
125+
:::image type="content" source="../media/studio/json-output-tab.png" alt-text="Screenshot of results JSON output tab in the Document Intelligence Studio.":::
126+
127+
123128
### Pages
124129

125130
The pages collection is a list of pages within the document. Each page is represented sequentially within the document and includes the orientation angle indicating if the page is rotated and the width and height (dimensions in pixels). The page units in the model output are computed as shown:

articles/ai-services/openai/how-to/embeddings.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,14 +6,14 @@ manager: nitinme
66
ms.service: azure-ai-openai
77
ms.custom: devx-track-python
88
ms.topic: how-to
9-
ms.date: 03/26/2025
9+
ms.date: 03/27/2025
1010
author: mrbullwinkle
1111
ms.author: mbullwin
1212
recommendations: false
1313
---
1414
# Learn how to generate embeddings with Azure OpenAI
1515

16-
An embedding is a special format of data representation that can be easily utilized by machine learning models and algorithms. The embedding is an information dense representation of the semantic meaning of a piece of text. Each embedding is a vector of floating point numbers, such that the distance between two embeddings in the vector space is correlated with semantic similarity between two inputs in the original format. For example, if two texts are similar, then their vector representations should also be similar. Embeddings power vector similarity search in Azure Databases such as [Azure Cosmos DB for MongoDB vCore](/azure/cosmos-db/mongodb/vcore/vector-search) , [Azure SQL Database](/azure/azure-sql/database/ai-artificial-intelligence-intelligent-applications?view=azuresql&preserve-view=true#vector-search) or [Azure Database for PostgreSQL - Flexible Server](/azure/postgresql/flexible-server/how-to-use-pgvector).
16+
An embedding is a special format of data representation that can be easily utilized by machine learning models and algorithms. The embedding is an information dense representation of the semantic meaning of a piece of text. Each embedding is a vector of floating point numbers, such that the distance between two embeddings in the vector space is correlated with semantic similarity between two inputs in the original format. For example, if two texts are similar, then their vector representations should also be similar. Embeddings power vector similarity search in Azure Databases such as [Azure Cosmos DB for NoSQL](/azure/cosmos-db/nosql/vector-search), [Azure Cosmos DB for MongoDB vCore](/azure/cosmos-db/mongodb/vcore/vector-search), [Azure SQL Database](/azure/azure-sql/database/ai-artificial-intelligence-intelligent-applications?view=azuresql&preserve-view=true#vector-search) or [Azure Database for PostgreSQL - Flexible Server](/azure/postgresql/flexible-server/how-to-use-pgvector).
1717

1818
## How to get embeddings
1919

articles/ai-services/translator/document-translation/faq.md

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ manager: nitinme
77

88
ms.service: azure-ai-translator
99
ms.topic: conceptual
10-
ms.date: 01/27/2025
10+
ms.date: 03/27/2025
1111
ms.author: lajanuar
1212
---
1313

@@ -50,3 +50,10 @@ No. Don't include SAS token-appended URLs. Managed identities eliminate the need
5050
#### Which PDF format renders the best results?
5151

5252
PDF documents generated from digital file formats (also known as "native" PDFs) provide optimal output. Scanned PDFs are images of printed documents scanned into an electronic format. Translating scanned PDF files can result in loss of the original formatting, layout, and style, and affect the quality of the translation.
53+
54+
#### Can I learn more about single document synchronous translation?
55+
56+
Yes.
57+
58+
* For more information, *see* [Synchronous document translation](overview.md#synchronous-translation)
59+
* To view `synchronous document translation` sample code in our GitHub repository, *see* [.NET/C#](https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/translation/Azure.AI.Translation.Document/samples/Sample5_SynchronousTranslation.md); [Python](https://github.com/Azure/azure-sdk-for-python/blob/azure-ai-translation-document_1.0.0/sdk/translation/azure-ai-translation-document/samples/sample_single_document_translation.py); [REST API](quickstarts/rest-api.md#synchronously-translate-a-single-document-post)

articles/ai-services/translator/faq.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ manager: nitinme
77

88
ms.service: azure-ai-translator
99
ms.topic: conceptual
10-
ms.date: 01/29/2025
10+
ms.date: 03/26/2025
1111
ms.author: lajanuar
1212
---
1313

articles/search/search-howto-managed-identities-cosmos-db.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -74,14 +74,14 @@ $cosmosdb_acc_name = <cosmos db account name>
7474
$resource_group = <resource group name>
7575
$subsciption = <subscription ID>
7676
$system_assigned_principal = <Object (principal) ID for the search service's system/user assigned identity>
77-
$readOnlyRoleDefinitionId = "00000000-0000-0000-0000-00000000000"
78-
$scope=$(az cosmosdb show --name $cosmosdbname --resource-group $resourcegroup --query id --output tsv)
77+
$readOnlyRoleDefinitionId = "00000000-0000-0000-0000-000000000001"
78+
$scope=$(az cosmosdb show --name $cosmosdb_acc_name --resource-group $resource_group --query id --output tsv)
7979
```
8080

8181
Define a role assignment for the system-assigned identity:
8282

8383
```azurecli
84-
az cosmosdb sql role assignment create --account-name $cosmosdbname --resource-group $resourcegroup --role-definition-id $readOnlyRoleDefinitionId --principal-id $sys_principal --scope $scope
84+
az cosmosdb sql role assignment create --account-name $cosmosdb_acc_name --resource-group $resource_group --role-definition-id $readOnlyRoleDefinitionId --principal-id $system_assigned_principal --scope $scope
8585
```
8686

8787
For more information, see [Use data plane role-based access control with Azure Cosmos DB for NoSQL](/azure/cosmos-db/nosql/security/how-to-grant-data-plane-role-based-access)

articles/search/tutorial-rag-build-solution-query.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ You're setting up two clients, so you need endpoints and permissions on both res
4949
# Set endpoints and API keys for Azure services
5050
AZURE_SEARCH_SERVICE: str = "PUT YOUR SEARCH SERVICE ENDPOINT HERE"
5151
# AZURE_SEARCH_KEY: str = "DELETE IF USING ROLES, OTHERWISE PUT YOUR SEARCH SERVICE ADMIN KEY HERE"
52-
AZURE_OPENAI_ACCOUNT: str = "PUR YOUR AZURE OPENAI ENDPOINT HERE"
52+
AZURE_OPENAI_ACCOUNT: str = "PUT YOUR AZURE OPENAI ENDPOINT HERE"
5353
# AZURE_OPENAI_KEY: str = "DELETE IF USING ROLES, OTHERWISE PUT YOUR AZURE OPENAI KEY HERE"
5454
```
5555

0 commit comments

Comments
 (0)