Skip to content

Commit 9063726

Browse files
Merge pull request #6342 from MicrosoftDocs/main
Auto Publish – main to live - 2025-08-01 11:00 UTC
2 parents 0a310bc + 84ac38e commit 9063726

File tree

6 files changed

+31
-33
lines changed

6 files changed

+31
-33
lines changed

articles/ai-foundry/concepts/evaluation-evaluators/custom-evaluators.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ author: lgayhardt
66
ms.author: lagayhar
77
manager: scottpolly
88
ms.reviewer: mithigpe
9-
ms.date: 05/19/2025
9+
ms.date: 07/31/2025
1010
ms.service: azure-ai-foundry
1111
ms.topic: reference
1212
ms.custom:
@@ -28,7 +28,7 @@ Sometimes a large language model isn't needed for certain evaluation metrics. Th
2828
class AnswerLengthEvaluator:
2929
def __init__(self):
3030
pass
31-
# A class is made a callable my implementing the special method __call__
31+
# A class is made callable by implementing the special method __call__
3232
def __call__(self, *, answer: str, **kwargs):
3333
return {"answer_length": len(answer)}
3434
```

articles/ai-foundry/concepts/evaluation-evaluators/risk-safety-evaluators.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ author: lgayhardt
66
ms.author: lagayhar
77
manager: scottpolly
88
ms.reviewer: mithigpe
9-
ms.date: 05/19/2025
9+
ms.date: 07/31/2025
1010
ms.service: azure-ai-foundry
1111
ms.topic: reference
1212
ms.custom:
@@ -62,7 +62,7 @@ azure_ai_project = {
6262
}
6363
## Using Azure AI Foundry Development Platform, example: AZURE_AI_PROJECT=https://your-account.services.ai.azure.com/api/projects/your-project
6464
azure_ai_project = os.environ.get("AZURE_AI_PROJECT")
65-
credential=DefaultAzureCredential()
65+
credential = DefaultAzureCredential()
6666
```
6767

6868
## Hateful and unfair content

articles/ai-foundry/concepts/evaluation-evaluators/textual-similarity-evaluators.md

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ author: lgayhardt
66
ms.author: lagayhar
77
manager: scottpolly
88
ms.reviewer: changliu2
9-
ms.date: 05/19/2025
9+
ms.date: 07/31/2025
1010
ms.service: azure-ai-foundry
1111
ms.topic: reference
1212
ms.custom:
@@ -30,7 +30,7 @@ load_dotenv()
3030

3131
model_config = AzureOpenAIModelConfiguration(
3232
azure_endpoint=os.environ["AZURE_ENDPOINT"],
33-
api_key=os.environ.get["AZURE_API_KEY"],
33+
api_key=os.environ.get("AZURE_API_KEY"),
3434
azure_deployment=os.environ.get("AZURE_DEPLOYMENT_NAME"),
3535
api_version=os.environ.get("AZURE_API_VERSION"),
3636
)
@@ -50,7 +50,7 @@ from azure.ai.evaluation import SimilarityEvaluator
5050

5151
similarity = SimilarityEvaluator(model_config=model_config, threshold=3)
5252
similarity(
53-
query="Is Marie Curie is born in Paris?",
53+
query="Is Marie Curie born in Paris?",
5454
response="According to wikipedia, Marie Curie was not born in Paris but in Warsaw.",
5555
ground_truth="Marie Curie was born in Warsaw."
5656
)
@@ -134,7 +134,6 @@ The numerical score is a 0-1 float and a higher score is better. Given a numeric
134134
```python
135135
from azure.ai.evaluation import GleuScoreEvaluator
136136

137-
138137
gleu_score = GleuScoreEvaluator(threshold=0.2)
139138
gleu_score(
140139
response="According to wikipedia, Marie Curie was not born in Paris but in Warsaw.",
@@ -168,7 +167,6 @@ rouge(
168167
response="According to wikipedia, Marie Curie was not born in Paris but in Warsaw.",
169168
ground_truth="Marie Curie was born in Warsaw."
170169
)
171-
172170
```
173171

174172
### ROUGE score output
@@ -203,7 +201,6 @@ meteor_score(
203201
response="According to wikipedia, Marie Curie was not born in Paris but in Warsaw.",
204202
ground_truth="Marie Curie was born in Warsaw."
205203
)
206-
207204
```
208205

209206
### METEOR score output

articles/ai-foundry/how-to/benchmark-model-in-catalog.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ ms.service: azure-ai-foundry
77
ms.custom:
88
- ai-learning-hub
99
ms.topic: how-to
10-
ms.date: 05/19/2025
10+
ms.date: 07/31/2025
1111
ms.reviewer: changliu2
1212
reviewer: changliu2
1313
ms.author: lagayhar
@@ -22,7 +22,7 @@ In this article, you learn to streamline your model selection process in the Azu
2222

2323
- [Quality, safety, cost, and performance leaderboards](#access-model-leaderboards) to quickly identify the model leaders along a single criterion (quality, cost, or throughput);
2424
- [Trade-off charts](#compare-models-in-the-trade-off-charts) to see how models perform on one metric versus another, such as quality versus cost, among different selection criteria;
25-
- [Leaderboards by scenario](#view-leaderboards-by-scenario) to find the best leaderboards that suite your scenario.
25+
- [Leaderboards by scenario](#view-leaderboards-by-scenario) to find the best leaderboards that suit your scenario.
2626

2727
## Prerequisites
2828

articles/ai-foundry/how-to/continuous-evaluation-agents.md

Lines changed: 16 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ description: This article provides instructions on how to continuously evaluate
55
manager: scottpolly
66
ms.service: azure-ai-foundry
77
ms.topic: how-to
8-
ms.date: 05/19/2025
8+
ms.date: 07/31/2025
99
ms.reviewer: amibp
1010
ms.author: lagayhar
1111
author: lgayhardt
@@ -20,6 +20,7 @@ Continuous evaluation for Agents provides near real-time observability and monit
2020
## Getting Started
2121

2222
### Prerequisites
23+
2324
[!INCLUDE [uses-fdp-only](../includes/uses-fdp-only.md)]
2425

2526
- An agent created within the project
@@ -51,22 +52,22 @@ project_client = AIProjectClient.from_connection_string(
5152
agent = project_client.agents.create_agent(
5253
model=os.environ["MODEL_DEPLOYMENT_NAME"],
5354
name="my-assistant",
54-
instructions="You are helpful assistant",
55+
instructions="You are a helpful assistant",
5556
tools=file_search_tool.definitions,
5657
tool_resources=file_search_tool.resources,
5758
)
5859

5960
# Create thread and process user message
60-
thread = project.agents.create_thread()
61-
project.agents.create_message(thread_id=thread.id, role="user", content="Hello, what Contoso products do you know?")
62-
run = project.agents.create_and_process_run(thread_id=thread.id, agent_id=agent.id)
61+
thread = project_client.agents.create_thread()
62+
project_client.agents.create_message(thread_id=thread.id, role="user", content="Hello, what Contoso products do you know?")
63+
run = project_client.agents.create_and_process_run(thread_id=thread.id, agent_id=agent.id)
6364

6465
# Handle run status
6566
if run.status == "failed":
6667
print(f"Run failed: {run.last_error}")
6768

6869
# Print thread messages
69-
for message in project.agents.list_messages(thread_id=thread.id).text_messages:
70+
for message in project_client.agents.list_messages(thread_id=thread.id).text_messages:
7071
print(message)
7172

7273
```
@@ -89,12 +90,12 @@ evaluators={
8990

9091
```python
9192

92-
project.evaluation.create_agent_evaluation(
93+
project_client.evaluation.create_agent_evaluation(
9394
AgentEvaluationRequest(
9495
thread=thread.id,
9596
run=run.id,
9697
evaluators=evaluators,
97-
appInsightsConnectionString = project.telemetry.get_connection_string(),
98+
appInsightsConnectionString = project_client.telemetry.get_connection_string(),
9899
)
99100
)
100101

@@ -144,7 +145,7 @@ except HttpResponseError as err:
144145

145146
### Capture reasoning explanations for your evaluation result
146147

147-
AI-assisted evaluators employ chain-of-thought reasoning to generate an explanation for the score in your evaluation result. To enable this on, set redact_score_properties to True in the AgentEvaluationRedactionConfiguration object and pass that as part of your request.
148+
AI-assisted evaluators employ chain-of-thought reasoning to generate an explanation for the score in your evaluation result. To enable this, set redact_score_properties to False in the AgentEvaluationRedactionConfiguration object and pass that as part of your request.
148149

149150
This helps you understand the reasoning behind the scores for each metric.
150151

@@ -155,7 +156,7 @@ This helps you understand the reasoning behind the scores for each metric.
155156

156157
from azure.ai.projects.models import AgentEvaluationRedactionConfiguration
157158

158-
project.evaluation.create_agent_evaluation(
159+
project_client.evaluation.create_agent_evaluation(
159160
AgentEvaluationRequest(
160161
thread=thread.id,
161162
run=run.id,
@@ -171,24 +172,24 @@ project.evaluation.create_agent_evaluation(
171172

172173
### Customize your sampling configuration
173174

174-
You can customize the sampling configuration by defining an `AgentEvaluationSamplingConfiguration` and specify your preferred sampling percent and maximum requests hour within the system limit of 1000/hour.
175+
You can customize the sampling configuration by defining an `AgentEvaluationSamplingConfiguration` and specify your preferred sampling percent and maximum requests per hour within the system limit of 1000/hour.
175176

176177
```python
177178

178-
from azure.ai.projects.models
179+
from azure.ai.projects.models
179180

180181
sampling_config = AgentEvaluationSamplingConfiguration (
181182
name = agent.id,
182183
samplingPercent = 15, # Percentage of sampling per hour (0-100)
183184
maxRequestRate = 250, # Maximum request rate per hour (0-1000)
184185
)
185-
project.evaluation.create_agent_evaluation(
186+
project_client.evaluation.create_agent_evaluation(
186187
AgentEvaluationRequest(
187188
thread=thread.id,
188189
run=run.id,
189190
evaluators=evaluators,
190191
samplingConfiguration = sampling_config,
191-
appInsightsConnectionString = project.telemetry.get_connection_string(),
192+
appInsightsConnectionString = project_client.telemetry.get_connection_string(),
192193
)
193194
)
194195
```
@@ -198,7 +199,7 @@ project.evaluation.create_agent_evaluation(
198199
199200
## Viewing continuous evaluation results
200201

201-
After you deployed your application to production with continuous evaluation setup, you can [monitor the quality and safety of your agent with Azure AI Foundry and Azure Monitor](./monitor-applications.md).
202+
After you deploy your application to production with continuous evaluation setup, you can [monitor the quality and safety of your agent with Azure AI Foundry and Azure Monitor](./monitor-applications.md).
202203

203204
## Related content
204205

articles/ai-foundry/how-to/monitor-applications.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ description: This article provides instructions on how to continuously monitor G
55
manager: scottpolly
66
ms.service: azure-ai-foundry
77
ms.topic: how-to
8-
ms.date: 05/19/2025
8+
ms.date: 07/31/2025
99
ms.reviewer: amibp
1010
ms.author: lagayhar
1111
author: lgayhardt
@@ -15,7 +15,7 @@ author: lgayhardt
1515

1616
[!INCLUDE [feature-preview](../includes/feature-preview.md)]
1717

18-
Monitoring your generative AI applications has never been more important, due to the complexity and rapid evolvement of the AI industry. Azure AI Foundry Observability, integrated with Azure Monitor Application Insights, enables you to continuously monitor your deployed AI applications to ensure that they're performant, safe, and produce high-quality results in production. In addition to the continuous monitoring capabilities, we also provide [continuous evaluation capabilities for Agents](./continuous-evaluation-agents.md) to add further enhance the Foundry Observability dashboard with visibility into additional critical quality and safety metrics.
18+
Monitoring your generative AI applications has never been more important, due to the complexity and rapid evolution of the AI industry. Azure AI Foundry Observability, integrated with Azure Monitor Application Insights, enables you to continuously monitor your deployed AI applications to ensure that they're performant, safe, and produce high-quality results in production. In addition to the continuous monitoring capabilities, we also provide [continuous evaluation capabilities for Agents](./continuous-evaluation-agents.md) to further enhance the Foundry Observability dashboard with visibility into additional critical quality and safety metrics.
1919

2020
[!INCLUDE [uses-fdp-only](../includes/uses-fdp-only.md)]
2121
## How to enable monitoring
@@ -57,7 +57,7 @@ Follow these steps to access and utilize the built-in monitoring view in your AI
5757

5858
Application Insights is a powerful tool for application performance monitoring (APM) that provides insights into the health and performance of your applications.
5959

60-
You can open the **Application analytics** dashboard in Azure Monitor Application Insights workbooks gallery by selecting on **View in Azure Monitor Application Insights** link at the end of the page.
60+
You can open the **Application analytics** dashboard in Azure Monitor Application Insights workbooks gallery by selecting the **View in Azure Monitor Application Insights** link at the end of the page.
6161

6262
This dashboard is opened as an editable workbook where you can customize the workbook and save according to your needs.
6363

@@ -70,14 +70,14 @@ This dashboard is opened as an editable workbook where you can customize the wor
7070
3. Save your latest changes and create different views as needed by selecting **Save**.
7171
:::image type="content" source="../media/how-to/monitor-applications/customize-dashboard-4.png" alt-text="Screenshot of workbooks tab under monitoring highlighting the save button and tab in Azure portal." lightbox="../media/how-to/monitor-applications/customize-dashboard-4.png":::
7272

73-
4. Share with your team by selecting "Share" icon in the command bar.
73+
4. Share with your team by selecting the **Share** icon in the command bar.
7474
:::image type="content" source="../media/how-to/monitor-applications/customize-dashboard-5.png" alt-text="Screenshot of workbooks tab under monitoring highlighting share workbook button and tab in Azure portal." lightbox="../media/how-to/monitor-applications/customize-dashboard-5.png":::
7575

7676
## Explore and analyze with Kusto Query Language (KQL)
7777

7878
[KQL (Kusto Query Language)](/kusto/query/) is a powerful query language used in Azure to explore, analyze, and visualize large volumes of telemetry and log data.
7979

80-
In the **Application analytics** dashboard view, you can **Open query link** by selecting on the icon in the top right for a particular tile or chart.
80+
In the **Application analytics** dashboard view, you can **Open query link** by selecting the icon in the top right for a particular tile or chart.
8181

8282
:::image type="content" source="../media/how-to/monitor-applications/query-link.png" alt-text="Screenshot of application analytics dashboard view highlighting the open query link button in Azure portal." lightbox="../media/how-to/monitor-applications/query-link.png":::
8383

@@ -91,7 +91,7 @@ You can define Azure Alert rules based on the previous KQL queries to proactivel
9191

9292
:::image type="content" source="../media/how-to/monitor-applications/create-new-alert-rule-1.png" alt-text="Screenshot of logs highlighting new alert rule button in Azure portal." lightbox="../media/how-to/monitor-applications/create-new-alert-rule-1.png":::
9393

94-
Selecting on the **New alert rule** button opens a wizard to create an alert rule on the related signal.
94+
Selecting the **New alert rule** button opens a wizard to create an alert rule on the related signal.
9595

9696
:::image type="content" source="../media/how-to/monitor-applications/create-new-alert-rule-2.png" alt-text="Screenshot of create an alert rule wizard in Azure portal." lightbox="../media/how-to/monitor-applications/create-new-alert-rule-2.png":::
9797

0 commit comments

Comments
 (0)