You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/ai-services/content-understanding/quickstart/use-ai-foundry.md
+10-10Lines changed: 10 additions & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -56,7 +56,7 @@ When you create a single-file Content Understanding task, you'll start by buildi
56
56
57
57
1. Upload a sample file of an invoice document or any other data relevant to your scenario.
58
58
59
-
:::image type="content" source="../media/quickstart/upload-data.png" alt-text="Screenshot of upload step in user experience.":::
59
+
:::image type="content" source="../media/quickstarts/upload-data.png" alt-text="Screenshot of upload step in user experience.":::
60
60
61
61
1. Next, the Content Understanding service suggests analyzer templates based on your content type. Check out [Analyzer templates offered with Content Understanding](../concepts/analyzer-templates.md) for a full list of all templates offered for each modality. For this example, select **Document analysis** to build your own schema tailored to the invoice scenario. When using your own data, select the analyzer template that best fits your needs, or create your own. See [Analyzer templates](../concepts/analyzer-templates.md) for a full list of available templates.
62
62
@@ -96,7 +96,7 @@ In this example, the schema is created to extract key fields from an invoice doc
96
96
97
97
1. Upload one or multiple sample files of invoice documents or any other document data relevant to your scenario.
98
98
99
-
:::image type="content" source="../media/quickstart/upload-test-data.png" alt-text="Screenshot of upload step in user experience.":::
99
+
:::image type="content" source="../media/quickstarts/upload-test-data.png" alt-text="Screenshot of upload step in user experience.":::
100
100
101
101
2. Add fields to your schema:
102
102
@@ -108,41 +108,41 @@ In this example, the schema is created to extract key fields from an invoice doc
108
108
109
109
* Specify the method to generate the value for each field.
110
110
111
-
:::image type="content" source="../media/quickstart/add-fields.png" alt-text="Screenshot of upload step in user experience.":::
111
+
:::image type="content" source="../media/quickstarts/add-fields.png" alt-text="Screenshot of upload step in user experience.":::
112
112
113
113
114
114
3. Select **Save**.
115
115
116
-
:::image type="content" source="../media/quickstart/save-schema.png" alt-text="Screenshot of completed schema.":::
116
+
:::image type="content" source="../media/quickstarts/save-schema.png" alt-text="Screenshot of completed schema.":::
117
117
118
118
4. Upload one or more pieces of reference data for the service to analyze. Adding reference data allows the model to compare and apply multi-step reasoning to your test data in order to infer conclusions about that data.
119
119
120
-
:::image type="content" source="../media/quickstart/reference-data.png" alt-text="Screenshot of completed schema.":::
120
+
:::image type="content" source="../media/quickstarts/reference-data.png" alt-text="Screenshot of completed schema.":::
121
121
122
122
5. Run analysis on your data. Kicking off analysis generates an output on your test files based on the schema that you just created, and applies predictions by comparing that output to your reference data.
123
123
124
-
:::image type="content" source="../media/quickstart/prediction.png" alt-text="Screenshot of completed schema.":::
124
+
:::image type="content" source="../media/quickstarts/prediction.png" alt-text="Screenshot of completed schema.":::
125
125
126
126
6. Once you're satisfied with the quality of your output, select **Build analyzer**. This action creates an analyzer ID that you can integrate into your own applications, allowing you to call the analyzer from your code.
127
127
128
-
:::image type="content" source="../media/quickstart/build-analyzer.png" alt-text="Screenshot of built analyzer.":::
128
+
:::image type="content" source="../media/quickstarts/build-analyzer.png" alt-text="Screenshot of built analyzer.":::
129
129
130
130
Now you successfully built your first Content Understanding analyzer, and are ready to start extracting insights from your data. When you select the analyzer you just created, you can view sample code to get started with implenting this in code.
131
131
132
-
:::image type="content" source="../media/quickstart/view-code.png" alt-text="Screenshot of completed schema.":::
132
+
:::image type="content" source="../media/quickstarts/view-code.png" alt-text="Screenshot of completed schema.":::
133
133
134
134
Check out [Quickstart: Azure AI Content Understanding REST APIs](./use-rest-api.md) to utilize the REST API to call your analyzer.
135
135
136
136
## Sharing your project
137
137
138
138
In order to share and manage access to the project you created, navigate to the Management Center, found at the bottom of the navigation for your project:
139
139
140
-
:::image type="content" source="../media/quickstarts/cu-find-management-center.png" alt-text="Screenshot of where to find management center.":::
140
+
:::image type="content" source="../media/quickstarts/cu-landing-page.png" alt-text="Screenshot of where to find management center.":::
141
141
142
142
143
143
You can manage the users and their individual roles here:
144
144
145
-
:::image type="content" source="../media/quickstarts/cu-management-center.png" alt-text="Screenshot of Project users section of management center.":::
145
+
:::image type="content" source="../media/quickstarts/management-center.png" alt-text="Screenshot of Project users section of management center.":::
146
146
147
147
148
148
:::image type="content" source="../media/analyzer-template/sample-code.png" alt-text="Screenshot of analyzer sample code.":::
0 commit comments