Skip to content

Commit bb28e25

Browse files
committed
Merge branch 'main' into release-ai-speech-cnv-foundry
2 parents 1d5ea58 + d853af3 commit bb28e25

27 files changed

+224
-178
lines changed

articles/ai-foundry/how-to/azure-policy.md

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,13 @@ You can also assign policies by using [Azure PowerShell](/azure/governance/polic
6161

6262
## Conditional access policies
6363

64-
To control who can access your Azure AI Foundry hubs and projects, use [Microsoft Entra Conditional Access](/azure/active-directory/conditional-access/overview). To use Conditional Access for hubs, [assign the Conditional Access policy](/azure/active-directory/conditional-access/concept-conditional-access-cloud-apps) to the app named __Azure Machine Learning__. The app ID is __0736f41a-0425-bdb5-1563eff02385__.
64+
To control who can access your Azure AI Foundry hubs and projects, use [Microsoft Entra Conditional Access](/azure/active-directory/conditional-access/overview). To use Conditional Access for hubs, [assign the Conditional Access policy](/azure/active-directory/conditional-access/concept-conditional-access-cloud-apps) to the following apps:
65+
66+
| App name | App ID | Description |
67+
|---|---|---|
68+
| Azure AI Foundry App | cb2ff863-7f30-4ced-ab89-a00194bcf6d9 | Use to control access to the Azure AI Foundry portal. |
69+
| Azure Machine Learning Web App | d7304df8-741f-47d3-9bc2-df0e24e2071f | Use to control access to Azure Machine Learning studio. |
70+
| Azure Machine Learning | 0736f41a-0425-bdb5-1563eff02385 | Use to control direct access to the Azure Machine Learning API. For example, when using the SDK or REST API. Azure AI Foundry hub based projects rely on the Azure Machine Learning API. |
6571

6672
## Configure built-in policies
6773

articles/ai-foundry/how-to/develop/connections-add-sdk.md

Lines changed: 19 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -42,15 +42,13 @@ There are various authentication methods for the different connection types. Whe
4242

4343
## Azure OpenAI in Foundry Models
4444

45-
The following example creates an Azure OpenAI in Azure AI Foundry Models connection.
45+
The following example uses the [AzureOpenAIConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.azureopenaiconnection) class to create an Azure OpenAI in Azure AI Foundry Models connection.
4646

4747
> [!TIP]
4848
> To connect to Azure OpenAI and more AI services with one connection, you can use the [AI services connection](#azure-ai-services) instead.
4949
5050
```python
51-
from azure.ai.ml.entities import AzureOpenAIConnection, ApiKeyConfiguration
52-
from azure.ai.ml.entities import UsernamePasswordConfiguration
53-
51+
from azure.ai.ml.entities import AzureOpenAIConnection
5452
name = "XXXXXXXXX"
5553

5654
target = "https://XXXXXXXXX.cognitiveservices.azure.com/"
@@ -59,9 +57,6 @@ resource_id= "Azure-resource-id"
5957

6058
# Microsoft Entra ID
6159
credentials = None
62-
# Uncomment the following if you need to use API key instead
63-
# api_key= "my-key"
64-
# credentials = ApiKeyConfiguration(key=api_key)
6560

6661
wps_connection = AzureOpenAIConnection(
6762
name=name,
@@ -75,22 +70,19 @@ ml_client.connections.create_or_update(wps_connection)
7570

7671
## Azure AI services
7772

78-
The following example creates an Azure AI services connection. This example creates one connection for the AI services documented in the [Connect to Azure AI services](../../../ai-services/connect-services-ai-foundry-portal.md) article. The same connection also supports Azure OpenAI.
73+
The following example uses the [AzureAIServicesConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.azureaiservicesconnection) class to create an Azure AI services connection. This example creates one connection for the AI services documented in the [Connect to Azure AI services](../../../ai-services/connect-services-ai-foundry-portal.md) article. The same connection also supports Azure OpenAI.
7974

8075
```python
81-
from azure.ai.ml.entities import AzureAIServicesConnection, ApiKeyConfiguration
82-
from azure.ai.ml.entities import UsernamePasswordConfiguration
76+
from azure.ai.ml.entities import AzureAIServicesConnection
8377

8478
name = "my-ai-services"
8579

86-
target = "https://XXXXXXXXX.cognitiveservices.azure.com/"
80+
target = "https://my.cognitiveservices.azure.com/"
8781
resource_id=""
8882

8983
# Microsoft Entra ID
9084
credentials = None
91-
# Uncomment the following if you need to use API key instead
92-
# api_key= "my-key"
93-
# credentials = ApiKeyConfiguration(key=api_key)
85+
9486

9587
wps_connection = AzureAIServicesConnection(
9688
name=name,
@@ -103,20 +95,17 @@ ml_client.connections.create_or_update(wps_connection)
10395

10496
## Azure AI Search
10597

106-
The following example creates an Azure AI Search connection:
98+
The following example uses the [AzureAISearchConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.azureaisearchconnection) class to create an Azure AI Search connection:
10799

108100
```python
109-
from azure.ai.ml.entities import AzureAISearchConnection, ApiKeyConfiguration
110-
from azure.ai.ml.entities import UsernamePasswordConfiguration
101+
from azure.ai.ml.entities import AzureAISearchConnection
111102

112103
name = "my_aisearch_demo_connection"
113-
target = "https://XXXXXXXXX.search.windows.net"
104+
target = "https://my.search.windows.net"
114105

115106
# Microsoft Entra ID
116107
credentials = None
117-
# Uncomment the following if you need to use API key instead
118-
# api_key= "my-key"
119-
# credentials = ApiKeyConfiguration(key=api_key)
108+
120109

121110
wps_connection = AzureAISearchConnection(
122111
name=name,
@@ -132,11 +121,10 @@ The following example creates an Azure AI Content Safety connection:
132121

133122
```python
134123
from azure.ai.ml.entities import AzureContentSafetyConnection, ApiKeyConfiguration
135-
from azure.ai.ml.entities import UsernamePasswordConfiguration
136124

137125
name = "my_content_safety"
138126

139-
target = "https://XXXXXXXXX.cognitiveservices.azure.com/"
127+
target = "https://my.cognitiveservices.azure.com/"
140128
api_key = "XXXXXXXXX"
141129

142130
wps_connection = AzureContentSafetyConnection(
@@ -157,7 +145,7 @@ from azure.ai.ml.entities import ServerlessConnection
157145

158146
name = "my_maas_apk"
159147

160-
endpoint = "https://XXXXXXXXX.eastus2.inference.ai.azure.com/"
148+
endpoint = "https://my.eastus2.inference.ai.azure.com/"
161149
api_key = "XXXXXXXXX"
162150
wps_connection = ServerlessConnection(
163151
name=name,
@@ -170,11 +158,10 @@ ml_client.connections.create_or_update(wps_connection)
170158

171159
## Azure Blob Storage
172160

173-
The following example creates an Azure Blob Storage connection. This connection is authenticated with an account key or a SAS token:
161+
The following example uses the [AzureBlobStoreConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.azureblobstoreconnection) class to create an Azure Blob Storage connection. This connection is authenticated with an account key or a SAS token:
174162

175163
```python
176164
from azure.ai.ml.entities import AzureBlobStoreConnection, SasTokenConfiguration,AccountKeyConfiguration
177-
from azure.ai.ml.entities import UsernamePasswordConfiguration
178165

179166

180167
name = "my_blobstore"
@@ -198,7 +185,7 @@ The following example creates Azure Data Lake Storage Gen 2 connection. This con
198185

199186
```python
200187
from azure.ai.ml.entities import WorkspaceConnection
201-
from azure.ai.ml.entities import UsernamePasswordConfiguration, ServicePrincipalConfiguration
188+
from azure.ai.ml.entities import ServicePrincipalConfiguration
202189

203190
sp_config = ServicePrincipalConfiguration(
204191
tenant_id="XXXXXXXXXXXX",
@@ -222,7 +209,7 @@ ml_client.connections.create_or_update(workspace_connection=wps_connection)
222209

223210
## Microsoft OneLake
224211

225-
The following example creates a Microsoft OneLake connection. This connection is authenticated with a Service Principal:
212+
The following example uses the [MicrosoftOneLakeWorkspaceConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.microsoftonelakeconnection) class to create a Microsoft OneLake connection. This connection is authenticated with a Service Principal:
226213

227214
```python
228215
from azure.ai.ml.entities import MicrosoftOneLakeWorkspaceConnection, OneLakeArtifact
@@ -254,7 +241,7 @@ ml_client.connections.create_or_update(workspace_connection=wps_connection)
254241

255242
## Serp
256243

257-
The following example creates a Serp connection:
244+
The following example uses the [SerpConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.serpconnection) class:
258245

259246
```python
260247
from azure.ai.ml.entities import SerpConnection
@@ -271,7 +258,7 @@ ml_client.connections.create_or_update(wps_connection)
271258

272259
## OpenAI
273260

274-
The following example creates an OpenAI (not Azure OpenAI) connection:
261+
The following example uses the [OpenAIConnection](/python/api/azure-ai-ml/azure.ai.ml.entities.openaiconnection) class to create an OpenAI (not Azure OpenAI) connection:
275262

276263
```python
277264
from azure.ai.ml.entities import OpenAIConnection
@@ -288,11 +275,11 @@ ml_client.connections.create_or_update(wps_connection)
288275

289276
## Custom
290277

291-
The following example creates custom connection:
278+
The following example uses the [ApiKeyConfiguration](/python/api/azure-ai-ml/azure.ai.ml.entities.apikeyconnection) class to create custom connection:
292279

293280
```python
294281
from azure.ai.ml.entities import WorkspaceConnection
295-
from azure.ai.ml.entities import UsernamePasswordConfiguration, ApiKeyConfiguration
282+
from azure.ai.ml.entities import ApiKeyConfiguration
296283

297284

298285
name = "my_custom"

articles/ai-services/openai/how-to/provisioned-throughput-onboarding.md

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ title: Understanding costs associated with provisioned throughput units (PTU)
33
description: Learn about provisioned throughput costs and billing in Azure OpenAI.
44
ms.service: azure-ai-openai
55
ms.topic: conceptual
6-
ms.date: 03/31/2025
6+
ms.date: 05/20/2025
77
manager: nitinme
88
author: aahill
99
ms.author: aahi
@@ -47,10 +47,6 @@ Quota for provisioned deployments shows up in Azure AI Foundry as the following
4747

4848
:::image type="content" source="../media/provisioned/ptu-quota-page.png" alt-text="Screenshot of quota UI for Azure OpenAI provisioned." lightbox="../media/provisioned/ptu-quota-page.png":::
4949

50-
51-
> [!NOTE]
52-
> Global provisioned and data zone provisioned deployments are only supported for gpt-4o and gpt-4o-mini models at this time. For more information on model availability, review the [models documentation](../concepts/models.md).
53-
5450
## Hourly usage
5551

5652
Provisioned, Data Zone Provisioned, and Global Provisioned deployments are charged an hourly rate ($/PTU/hr) on the number of PTUs that have been deployed.  For example, a 300 PTU deployment will be charged the hourly rate times 300.  All Azure OpenAI pricing is available in the Azure Pricing Calculator.

0 commit comments

Comments
 (0)