Skip to content

Commit bcdfe0f

Browse files
committed
Edit TOC
1 parent 4e779a1 commit bcdfe0f

File tree

2 files changed

+21
-21
lines changed

2 files changed

+21
-21
lines changed

articles/machine-learning/how-to-deploy-online-endpoints.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -1036,11 +1036,11 @@ Check the logs to see whether the model was deployed without error.
10361036

10371037
# [Azure CLI](#tab/cli)
10381038

1039-
1. To see log output from a container, use the following CLI command:
1039+
To see log output from a container, use the following CLI command:
10401040

1041-
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-managed-online-endpoint.sh" ID="get_logs" :::
1041+
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-managed-online-endpoint.sh" ID="get_logs" :::
10421042

1043-
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
1043+
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
10441044

10451045
# [Python SDK](#tab/python)
10461046

@@ -1073,11 +1073,11 @@ By default, logs are pulled from the inference server. To see logs from the stor
10731073
> [!TIP]
10741074
> While templates are useful for deploying resources, they can't be used to list, show, or invoke resources. Use the Azure CLI, Python SDK, or the studio to perform these operations. The following code uses the Azure CLI.
10751075

1076-
1. To see log output from a container, use the following CLI command:
1076+
To see log output from a container, use the following CLI command:
10771077

1078-
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-managed-online-endpoint.sh" ID="get_logs" :::
1078+
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-managed-online-endpoint.sh" ID="get_logs" :::
10791079

1080-
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
1080+
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
10811081

10821082
---
10831083

@@ -1112,16 +1112,16 @@ Using the `MLClient` created earlier, get a handle to the endpoint. The endpoint
11121112
- `request_file` - File with request data
11131113
- `deployment_name` - Name of the specific deployment to test in an endpoint
11141114

1115-
1. Send a sample request using a [json](https://github.com/Azure/azureml-examples/blob/main/sdk/python/endpoints/online/model-1/sample-request.json) file.
1115+
Send a sample request using a [json](https://github.com/Azure/azureml-examples/blob/main/sdk/python/endpoints/online/model-1/sample-request.json) file.
11161116

1117-
```python
1118-
# test the blue deployment with some sample data
1119-
ml_client.online_endpoints.invoke(
1120-
endpoint_name=endpoint_name,
1121-
deployment_name="blue",
1122-
request_file="../model-1/sample-request.json",
1123-
)
1124-
```
1117+
```python
1118+
# test the blue deployment with some sample data
1119+
ml_client.online_endpoints.invoke(
1120+
endpoint_name=endpoint_name,
1121+
deployment_name="blue",
1122+
request_file="../model-1/sample-request.json",
1123+
)
1124+
```
11251125

11261126
# [Studio](#tab/azure-studio)
11271127

@@ -1142,11 +1142,11 @@ Use the **Test** tab in the endpoint's details page to test your managed online
11421142
> [!TIP]
11431143
> While templates are useful for deploying resources, they can't be used to list, show, or invoke resources. Use the Azure CLI, Python SDK, or the studio to perform these operations. The following code uses the Azure CLI.
11441144

1145-
1. Use either the `invoke` command or a REST client of your choice to invoke the endpoint and score some data:
1145+
Use either the `invoke` command or a REST client of your choice to invoke the endpoint and score some data:
11461146

1147-
```azurecli
1148-
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file cli/endpoints/online/model-1/sample-request.json
1149-
```
1147+
```azurecli
1148+
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file cli/endpoints/online/model-1/sample-request.json
1149+
```
11501150

11511151
---
11521152

@@ -1285,7 +1285,7 @@ If you aren't going use the endpoint and deployment, you should delete them. By
12851285

12861286
1. Select **Delete**.
12871287

1288-
Alternatively, you can delete a managed online endpoint directly by selecting the **Delete** icon in the [endpoint details page](#check-the-status-of-the-endpoint).
1288+
Alternatively, you can delete a managed online endpoint directly by selecting the **Delete** icon in the [endpoint details page](#check-the-status-of-the-online-endpoint).
12891289

12901290
# [ARM template](#tab/arm)
12911291

articles/machine-learning/toc.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -924,7 +924,7 @@ items:
924924
href: concept-endpoints-online.md
925925
- name: Model specification for online deployment
926926
href: concept-online-deployment-model-specification.md
927-
- name: Deploy an ML model with an online endpoint
927+
- name: Deploy a model to an online endpoint
928928
href: how-to-deploy-online-endpoints.md
929929
- name: Deploy models with safe rollout strategy
930930
href: how-to-safely-rollout-online-endpoints.md

0 commit comments

Comments
 (0)