You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
1043
+
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
1044
1044
1045
1045
# [Python SDK](#tab/python)
1046
1046
@@ -1073,11 +1073,11 @@ By default, logs are pulled from the inference server. To see logs from the stor
1073
1073
> [!TIP]
1074
1074
> While templates are useful for deploying resources, they can't be used to list, show, or invoke resources. Use the Azure CLI, Python SDK, or the studio to perform these operations. The following code uses the Azure CLI.
1075
1075
1076
-
1. To see log output from a container, use the following CLI command:
1076
+
To see log output from a container, use the following CLI command:
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
1080
+
By default, logs are pulled from the inference server container. To see logs from the storage initializer container, add the `--container storage-initializer` flag. For more information on deployment logs, see [Get container logs](how-to-troubleshoot-online-endpoints.md#get-container-logs).
1081
1081
1082
1082
---
1083
1083
@@ -1112,16 +1112,16 @@ Using the `MLClient` created earlier, get a handle to the endpoint. The endpoint
1112
1112
- `request_file`- File with request data
1113
1113
- `deployment_name`- Name of the specific deployment to test in an endpoint
1114
1114
1115
-
1. Send a sample request using a [json](https://github.com/Azure/azureml-examples/blob/main/sdk/python/endpoints/online/model-1/sample-request.json) file.
1115
+
Send a sample request using a [json](https://github.com/Azure/azureml-examples/blob/main/sdk/python/endpoints/online/model-1/sample-request.json) file.
1116
1116
1117
-
```python
1118
-
# test the blue deployment with some sample data
1119
-
ml_client.online_endpoints.invoke(
1120
-
endpoint_name=endpoint_name,
1121
-
deployment_name="blue",
1122
-
request_file="../model-1/sample-request.json",
1123
-
)
1124
-
```
1117
+
```python
1118
+
# test the blue deployment with some sample data
1119
+
ml_client.online_endpoints.invoke(
1120
+
endpoint_name=endpoint_name,
1121
+
deployment_name="blue",
1122
+
request_file="../model-1/sample-request.json",
1123
+
)
1124
+
```
1125
1125
1126
1126
# [Studio](#tab/azure-studio)
1127
1127
@@ -1142,11 +1142,11 @@ Use the **Test** tab in the endpoint's details page to test your managed online
1142
1142
> [!TIP]
1143
1143
> While templates are useful for deploying resources, they can't be used to list, show, or invoke resources. Use the Azure CLI, Python SDK, or the studio to perform these operations. The following code uses the Azure CLI.
1144
1144
1145
-
1. Use either the `invoke` command or a REST client of your choice to invoke the endpoint and score some data:
1145
+
Use either the `invoke` command or a REST client of your choice to invoke the endpoint and score some data:
1146
1146
1147
-
```azurecli
1148
-
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file cli/endpoints/online/model-1/sample-request.json
1149
-
```
1147
+
```azurecli
1148
+
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file cli/endpoints/online/model-1/sample-request.json
1149
+
```
1150
1150
1151
1151
---
1152
1152
@@ -1285,7 +1285,7 @@ If you aren't going use the endpoint and deployment, you should delete them. By
1285
1285
1286
1286
1. Select **Delete**.
1287
1287
1288
-
Alternatively, you can delete a managed online endpoint directly by selecting the **Delete** icon in the [endpoint details page](#check-the-status-of-the-endpoint).
1288
+
Alternatively, you can delete a managed online endpoint directly by selecting the **Delete** icon in the [endpoint details page](#check-the-status-of-the-online-endpoint).
0 commit comments