Skip to content

Commit ca0291a

Browse files
authored
Merge pull request #5311 from MicrosoftDocs/main
5/30/2025 PM Publish
2 parents e0aac65 + b462442 commit ca0291a

File tree

13 files changed

+62
-67
lines changed

13 files changed

+62
-67
lines changed

articles/ai-services/agents/how-to/virtual-networks.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ For customers without an existing virtual network, the Standard Setup with Priva
8080
### Option 1: manually deploy the bicep template
8181

8282
1. To deploy and customize the bicep templates, [download the template from GitHub](https://github.com/azure-ai-foundry/foundry-samples/tree/main/samples/microsoft/infrastructure-setup/15-private-network-standard-agent-setup). Download the following from the `private-network-standard-agent-setup` folder:
83-
1. `main.bicep`
83+
1. `main-create.bicep`
8484
1. `azuredeploy.parameters.json`
8585
1. `modules-network-secured folder`
8686
1. To authenticate to your Azure subscription from the Azure CLI, use the following command:
@@ -102,7 +102,7 @@ For customers without an existing virtual network, the Standard Setup with Priva
102102
1. To use default resource names, run:
103103

104104
```console
105-
az deployment group create --resource-group {my_resource_group} --template-file main.bicep
105+
az deployment group create --resource-group {my_resource_group} --template-file main-create.bicep
106106
```
107107
For more details, see the [README](https://github.com/azure-ai-foundry/foundry-samples/tree/main/samples/microsoft/infrastructure-setup/15-private-network-standard-agent-setup).
108108

@@ -154,7 +154,7 @@ For Agents, private endpoints ensure secure, internal-only connectivity for the
154154
| **Azure Cosmos DB** | Sql | `privatelink.documents.azure.com` | `documents.azure.com` |
155155
| **Azure Storage** | blob | `privatelink.blob.core.windows.net` | `blob.core.windows.net` |
156156

157-
157+
To create a conditional forwarder in the DNS Server to the Azure DNS Virtual Server, use the list of zones mentioned in the above table. The Azure DNS Virtual Server IP address is 168.63.129.16.
158158

159159
### Access your secured agents
160160

@@ -180,4 +180,4 @@ Our goal is to accelerate the development and deployment of AI agents without co
180180

181181

182182
## What's next?
183-
You’ve now successfully configured a Network Secure Account and project, use the [quickstart](../quickstart.md) to create your first agent.
183+
You’ve now successfully configured a Network Secure Account and project, use the [quickstart](../quickstart.md) to create your first agent.

articles/ai-services/agents/toc.yml

Lines changed: 6 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -133,20 +133,12 @@ items:
133133
href: /rest/api/aifoundry/aiagents
134134
- name: SDK
135135
items:
136-
- name: Azure SDK
137-
items:
138-
- name: C#
139-
href: /dotnet/api/overview/azure/ai.agents.persistent-readme
140-
- name: Python
141-
href: https://aka.ms/azsdk/azure-ai-projects/python/reference
142-
- name: JavaScript
143-
href: /javascript/api/overview/azure/ai-projects-readme
144-
- name: OpenAI SDK
145-
items:
146-
- name: C#
147-
href: https://github.com/openai/openai-dotnet/blob/main/README.md
148-
- name: Python
149-
href: https://github.com/openai/openai-python/blob/main/README.md
136+
- name: C#
137+
href: /dotnet/api/overview/azure/ai.agents.persistent-readme
138+
- name: Python
139+
href: https://aka.ms/azsdk/azure-ai-projects/python/reference
140+
- name: JavaScript
141+
href: /javascript/api/overview/azure/ai-projects-readme
150142
- name: Data monitoring reference
151143
href: reference/monitor-service.md
152144
- name: Resources

articles/ai-services/content-understanding/concepts/analyzer-templates.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ The following analyzer templates are available for use in the [Azure AI Foundry
2727
|Document analysis |Analyze documents to extract text, layout, structured fields, and more.|
2828
|Invoice analysis |Analyze invoice as prebuilt template and extract structured fields and tables.|
2929

30-
:::image type="content" source="../media/analyzer-template/document-analyzers.png" alt-text="Screenshot of document analyzer template.":::
30+
:::image type="content" source="../media/analyzer-template/document-analyzers.png" alt-text="Screenshot of document analyzer template." lightbox="../media/analyzer-template/document-analyzers.png":::
3131

3232
# [Image](#tab/image)
3333

@@ -37,7 +37,7 @@ The following analyzer templates are available for use in the [Azure AI Foundry
3737
|Retail inventory management |Retail inventory management for monitoring of products on shelves.|
3838
|Defect detection |Identify potential defects in provided images of metal plates.|
3939

40-
:::image type="content" source="../media/analyzer-template/image-analyzers.png" alt-text="Screenshot of image analyzer template.":::
40+
:::image type="content" source="../media/analyzer-template/image-analyzers.png" alt-text="Screenshot of image analyzer template." lightbox="../media/analyzer-template/image-analyzers.png":::
4141

4242
# [Audio](#tab/audio)
4343

@@ -48,7 +48,7 @@ The following analyzer templates are available for use in the [Azure AI Foundry
4848
|Post call analytics |Analyze call center conversations to extract transcripts, summaries, sentiment, and more.|
4949

5050

51-
:::image type="content" source="../media/analyzer-template/audio-analyzers.png" alt-text="Screenshot of audio analyzer template.":::
51+
:::image type="content" source="../media/analyzer-template/audio-analyzers.png" alt-text="Screenshot of audio analyzer template." lightbox="../media/analyzer-template/audio-analyzers.png":::
5252

5353
# [Video](#tab/video)
5454

@@ -60,6 +60,6 @@ The following analyzer templates are available for use in the [Azure AI Foundry
6060
|Advertising |Advertising analysis and moderation.|
6161

6262

63-
:::image type="content" source="../media/analyzer-template/video-analyzers.png" alt-text="Screenshot of video analyzer template.":::
63+
:::image type="content" source="../media/analyzer-template/video-analyzers.png" alt-text="Screenshot of video analyzer template." lightbox="../media/analyzer-template/video-analyzers.png":::
6464

6565
---

articles/ai-services/content-understanding/index.yml

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,8 +32,11 @@ conceptualContent:
3232
- title: AI Foundry
3333
links:
3434
- itemType: quickstart
35-
text: Quickstart
35+
text: "Quickstart: Content Understanding with a single file"
3636
url: quickstart/use-ai-foundry.md
37+
- itemType: quickstart
38+
text: "Quickstart: Content Understanding with multiple files"
39+
url: quickstart/use-ai-foundry-pro-mode.md
3740
- itemType: concept
3841
text: Analyzer templates
3942
url: concepts/analyzer-templates.md

articles/ai-services/content-understanding/quickstart/use-ai-foundry-pro-mode.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,15 +3,16 @@ title: "Create an Azure AI Content Understanding multi-file task in the Azure AI
33
titleSuffix: Azure AI services
44
description: Create an Azure AI Content Understanding multi-file task in the Azure AI Foundry portal
55
author: laujan
6+
ms.author: kabrow
67
manager: nitinme
78
ms.service: azure-ai-content-understanding
89
ms.topic: quickstart
910
ms.date: 05/29/2025
1011
---
1112

12-
# Try out Azure AI Content Understanding on multiple files in the Azure AI Foundry portal
13+
# Quickstart: Use Content Understanding with multiple files
1314

14-
This quickstart shows you how to use the Content Understanding service in the Azure AI Foundry portal to extract structured information from your data. Azure AI Foundry enables you to build and deploy generative AI applications and APIs responsibly.
15+
This quickstart shows you how to use the Content Understanding service in the [**Azure AI Foundry portal**](https://ai.azure.com/explore/aiservices/vision/contentunderstanding) to extract structured information from your data. Azure AI Foundry enables you to build and deploy generative AI applications and APIs responsibly.
1516

1617
Suppose you have document files and you want to automatically extract key information from them, while also comparing to reference data to infer conclusions from your files. Using Content Understanding, you can create a task to streamline your data processing, define a field schema to specify the information to extract or generate, and develop an analyzer that applies reasoning to your data, delivering key insights and conclusions. The analyzer becomes an API endpoint that you can integrate into your applications or workflows.
1718

articles/ai-services/content-understanding/quickstart/use-ai-foundry.md

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,14 +4,15 @@ titleSuffix: Azure AI services
44
description: Create an Azure AI Content Understanding single-file task in the Azure AI Foundry portal
55
author: laujan
66
manager: nitinme
7+
ms.author: kabrow
78
ms.service: azure-ai-content-understanding
89
ms.topic: quickstart
910
ms.date: 05/19/2025
1011
---
1112

12-
# Try out Azure AI Content Understanding with a single file in the Azure AI Foundry portal
13-
14-
This quickstart shows you how to use the Content Understanding service in the Azure AI Foundry portal to extract structured information from your data. Azure AI Foundry enables you to build and deploy generative AI applications and APIs responsibly.
13+
# Quickstart: Use Content Understanding with a single file
14+
15+
This quickstart shows you how to use the Content Understanding service in the [**Azure AI Foundry portal**](https://ai.azure.com/explore/aiservices/vision/contentunderstanding) to extract structured information from your data. Azure AI Foundry enables you to build and deploy generative AI applications and APIs responsibly.
1516

1617
Suppose you have files—such as documents, images, audio, or video—and you want to automatically extract key information from them. With Content Understanding, you can create a task to organize your data processing, define a field schema that specifies the information to extract or generate, and then build an analyzer. The analyzer becomes an API endpoint that you can integrate into your applications or workflows.
1718

articles/ai-services/content-understanding/quickstart/use-rest-api.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ ms.topic: quickstart
1010
ms.date: 05/19/2025
1111
---
1212

13-
# Quickstart: Azure AI Content Understanding REST APIs
13+
# Quickstart: Use Azure AI Content Understanding REST API
1414

1515
* This quickstart shows you how to use the [Content Understanding REST API](/rest/api/contentunderstanding/content-analyzers?view=rest-contentunderstanding-2025-05-01-preview&preserve-view=true) to get structured data from multimodal content in document, image, audio, and video files.
1616

articles/ai-services/content-understanding/toc.yml

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -26,22 +26,22 @@ items:
2626
- name: Glossary
2727
displayName: glossary, definition, updates, previews
2828
href: glossary.md
29-
- name: "AI Foundry portal"
29+
- name: Azure AI Foundry portal
3030
items:
31-
- name: "AI Foundry portal"
31+
- name: Analyzer templates
32+
displayName: analyzer, templates, document, text, images, video, audio, multimodal, visual, structured, content, field, extraction
33+
href: concepts/analyzer-templates.md
34+
- name: Quickstarts
3235
items:
33-
- name: "Quickstart: Try Content Understanding with a single file"
36+
- name: Try Content Understanding with a single file"
3437
displayName: quickstart, extract, text, images, OCR, optical character recognition, foundry, standard, mode
3538
href: quickstart/use-ai-foundry.md
36-
- name: "Quickstart: Try Content Understanding with multiple files"
39+
- name: Try Content Understanding with multiple files"
3740
displayName: quickstart, extract, text, images, OCR, optical character recognition, foundry, pro, mode
3841
href: quickstart/use-ai-foundry-pro-mode.md
39-
- name: Analyzer templates
40-
displayName: analyzer, templates, document, text, images, video, audio, multimodal, visual, structured, content, field, extraction
41-
href: concepts/analyzer-templates.md
4242
- name: Analyzers
4343
items:
44-
- name: "Quickstart"
44+
- name: Quickstart
4545
displayName: quickstart, extract, text, images, OCR, optical character recognition, content filtering, filter
4646
href: quickstart/use-rest-api.md
4747
- name: Modalities

articles/search/includes/quickstarts/agentic-retrieval-python.md

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ author: haileytap
44
ms.author: haileytapia
55
ms.service: azure-ai-search
66
ms.topic: include
7-
ms.date: 05/29/2025
7+
ms.date: 05/30/2025
88
---
99

1010
[!INCLUDE [Feature preview](../previews/preview-generic.md)]
@@ -39,20 +39,19 @@ Agentic retrieval [supports several models](../../search-agentic-retrieval-how-t
3939

4040
To deploy the Azure OpenAI models:
4141

42-
1. Sign in to the [Azure AI Foundry portal](https://ai.azure.com/).
42+
1. Sign in to the [Azure AI Foundry portal](https://ai.azure.com/) and select your Azure OpenAI resource.
4343

44-
1. On the home page, find the Azure OpenAI tile and select **Let's go**.
44+
1. From the left pane, select **Model catalog**.
4545

46-
:::image type="content" source="../../media/search-get-started-agentic-retrieval/azure-openai-lets-go-tile.png" alt-text="Screenshot of the Azure OpenAI tile in the Azure AI Foundry portal." border="true" lightbox="../../media/search-get-started-agentic-retrieval/azure-openai-lets-go-tile.png":::
46+
1. Select **gpt-4o-mini**, and then select **Use this model**.
4747

48-
Your most recently used Azure OpenAI resource appears. If you have multiple Azure OpenAI resources, select **All resources** to switch between them.
48+
1. Specify a deployment name. To simplify your code, we recommend **gpt-4o-mini**.
4949

50-
1. From the left pane, select **Model catalog**.
50+
1. Accept the defaults.
5151

52-
1. Deploy `gpt-4o-mini` and `text-embedding-3-large` to your Azure OpenAI resource.
52+
1. Select **Deploy**.
5353

54-
> [!NOTE]
55-
> To simplify your code, don't use a custom deployment name for either model. This quickstart assumes the deployment and model names are the same.
54+
1. Repeat the previous steps for **text-embedding-3-large**.
5655

5756
## Configure role-based access
5857

articles/search/includes/quickstarts/agentic-retrieval-rest.md

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ author: haileytap
44
ms.author: haileytapia
55
ms.service: azure-ai-search
66
ms.topic: include
7-
ms.date: 05/29/2025
7+
ms.date: 05/30/2025
88
---
99

1010
[!INCLUDE [Feature preview](../previews/preview-generic.md)]
@@ -40,20 +40,19 @@ Agentic retrieval [supports several models](../../search-agentic-retrieval-how-t
4040

4141
To deploy the Azure OpenAI models:
4242

43-
1. Sign in to the [Azure AI Foundry portal](https://ai.azure.com/).
43+
1. Sign in to the [Azure AI Foundry portal](https://ai.azure.com/) and select your Azure OpenAI resource.
4444

45-
1. On the home page, find the Azure OpenAI tile and select **Let's go**.
45+
1. From the left pane, select **Model catalog**.
4646

47-
:::image type="content" source="../../media/search-get-started-agentic-retrieval/azure-openai-lets-go-tile.png" alt-text="Screenshot of the Azure OpenAI tile in the Azure AI Foundry portal." border="true" lightbox="../../media/search-get-started-agentic-retrieval/azure-openai-lets-go-tile.png":::
47+
1. Select **gpt-4o-mini**, and then select **Use this model**.
4848

49-
Your most recently used Azure OpenAI resource appears. If you have multiple Azure OpenAI resources, select **All resources** to switch between them.
49+
1. Specify a deployment name. To simplify your code, we recommend **gpt-4o-mini**.
5050

51-
1. From the left pane, select **Model catalog**.
51+
1. Accept the defaults.
5252

53-
1. Deploy `gpt-4o-mini` and `text-embedding-3-large` to your Azure OpenAI resource.
53+
1. Select **Deploy**.
5454

55-
> [!NOTE]
56-
> To simplify your code, don't use a custom deployment name for either model. This quickstart assumes the deployment and model names are the same.
55+
1. Repeat the previous steps for **text-embedding-3-large**.
5756

5857
## Configure role-based access
5958

0 commit comments

Comments
 (0)