Skip to content

Commit cc13e1c

Browse files
committed
freshness pass
1 parent 66271c2 commit cc13e1c

File tree

2 files changed

+2
-41
lines changed

2 files changed

+2
-41
lines changed

articles/machine-learning/how-to-r-interactive-development.md

Lines changed: 2 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -4,12 +4,13 @@ titleSuffix: Azure Machine Learning
44
description: 'Learn how to work with R interactively on Azure Machine Learning'
55
ms.service: azure-machine-learning
66
ms.subservice: core
7-
ms.date: 06/01/2023
7+
ms.date: 03/21/2025
88
ms.topic: how-to
99
author: sdgilley
1010
ms.author: sgilley
1111
ms.reviewer: mavaisma
1212
ms.devlang: r
13+
# customer intent: As a data scientist, I want to use R interactively in Azure Machine Learning so that I can develop and test my models.
1314
---
1415

1516
# Interactive R development
@@ -107,42 +108,6 @@ For data stored in a data asset [created in Azure Machine Learning](how-to-creat
107108

108109
[!Notebook-r[](~/azureml-examples-mavaisma-r-azureml/tutorials/using-r-with-azureml/02-develop-in-interactive-r/work-with-data-assets.ipynb?name=read-uri)]
109110

110-
You can also use a Datastore URI to access different files on a registered Datastore, and read these resources into an R `data.frame`.
111-
112-
1. In this format, create a Datastore URI, using your own values:
113-
114-
```r
115-
subscription <- '<subscription_id>'
116-
resource_group <- '<resource_group>'
117-
workspace <- '<workspace>'
118-
datastore_name <- '<datastore>'
119-
path_on_datastore <- '<path>'
120-
121-
uri <- paste0("azureml://subscriptions/", subscription, "/resourcegroups/", resource_group, "/workspaces/", workspace, "/datastores/", datastore_name, "/paths/", path_on_datastore)
122-
```
123-
124-
> [!TIP]
125-
> Instead of remembering the datastore URI format, you can copy-and-paste the datastore URI from the Studio UI, if you know the datastore where your file is located:
126-
> 1. Navigate to the file/folder you want to read into R
127-
> 1. Select the elipsis (**...**) next to it.
128-
> 1. Select from the menu **Copy URI**.
129-
> 1. Select the **Datastore URI** to copy into your notebook/script.
130-
> Note that you must create a variable for `<path>` in the code.
131-
> :::image type="content" source="media/how-to-r-interactive-development/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
132-
133-
2. Create a filestore object using the previously mentioned URI:
134-
```r
135-
fs <- azureml.fsspec$AzureMachineLearningFileSystem(uri, sep = "")
136-
```
137-
138-
3. Read into an R `data.frame`:
139-
```r
140-
df <- with(fs$open("<path>)", "r") %as% f, {
141-
x <- as.character(f$read(), encoding = "utf-8")
142-
read.csv(textConnection(x), header = TRUE, sep = ",", stringsAsFactors = FALSE)
143-
})
144-
print(df)
145-
```
146111

147112
## Install R packages
148113

@@ -188,7 +153,3 @@ Beyond the issues described earlier, use R as you would in any other environment
188153
> [!NOTE]
189154
> - From an interactive R session, you can only write to the workspace file system.
190155
> - From an interactive R session, you cannot interact with MLflow (such as log model or query registry).
191-
192-
## Next steps
193-
194-
* [Adapt your R script to run in production](how-to-r-modify-script-for-production.md)

0 commit comments

Comments
 (0)