@@ -4,12 +4,13 @@ titleSuffix: Azure Machine Learning
4
4
description : ' Learn how to work with R interactively on Azure Machine Learning'
5
5
ms.service : azure-machine-learning
6
6
ms.subservice : core
7
- ms.date : 06/01/2023
7
+ ms.date : 03/21/2025
8
8
ms.topic : how-to
9
9
author : sdgilley
10
10
ms.author : sgilley
11
11
ms.reviewer : mavaisma
12
12
ms.devlang : r
13
+ # customer intent: As a data scientist, I want to use R interactively in Azure Machine Learning so that I can develop and test my models.
13
14
---
14
15
15
16
# Interactive R development
@@ -107,42 +108,6 @@ For data stored in a data asset [created in Azure Machine Learning](how-to-creat
107
108
108
109
[! Notebook - r [](~ / azureml - examples - mavaisma - r - azureml / tutorials / using - r - with - azureml / 02 - develop - in - interactive - r / work - with - data - assets.ipynb ?name = read - uri )]
109
110
110
- You can also use a Datastore URI to access different files on a registered Datastore , and read these resources into an R `data.frame`.
111
-
112
- 1 . In this format , create a Datastore URI , using your own values :
113
-
114
- `` `r
115
- subscription <- ' <subscription_id>'
116
- resource_group <- ' <resource_group>'
117
- workspace <- ' <workspace>'
118
- datastore_name <- ' <datastore>'
119
- path_on_datastore <- ' <path>'
120
-
121
- uri <- paste0(" azureml://subscriptions/" , subscription , " /resourcegroups/" , resource_group , " /workspaces/" , workspace , " /datastores/" , datastore_name , " /paths/" , path_on_datastore )
122
- ```
123
-
124
- > [! TIP ]
125
- > Instead of remembering the datastore URI format , you can copy - and - paste the datastore URI from the Studio UI , if you know the datastore where your file is located :
126
- > 1 . Navigate to the file / folder you want to read into R
127
- > 1 . Select the elipsis (** ... ** ) next to it.
128
- > 1 . Select from the menu ** Copy URI ** .
129
- > 1 . Select the ** Datastore URI ** to copy into your notebook / script.
130
- > Note that you must create a variable for `<path>` in the code.
131
- > ::: image type = " content" source = " media/how-to-r-interactive-development/datastore-uri-copy.png" alt - text = " Screenshot highlighting the copy of the datastore URI." :::
132
-
133
- 2 . Create a filestore object using the previously mentioned URI :
134
- `` `r
135
- fs <- azureml.fsspec $ AzureMachineLearningFileSystem(uri , sep = " " )
136
- ```
137
-
138
- 3 . Read into an R ` data.frame ` :
139
- ``` r
140
- df <- with(fs $ open(" <path>)" , " r" ) %as % f , {
141
- x <- as.character(f $ read(), encoding = " utf-8" )
142
- read.csv(textConnection(x ), header = TRUE , sep = " ," , stringsAsFactors = FALSE )
143
- })
144
- print(df )
145
- ```
146
111
147
112
# # Install R packages
148
113
@@ -188,7 +153,3 @@ Beyond the issues described earlier, use R as you would in any other environment
188
153
> [!NOTE]
189
154
> - From an interactive R session, you can only write to the workspace file system.
190
155
> - From an interactive R session, you cannot interact with MLflow (such as log model or query registry).
191
-
192
- ## Next steps
193
-
194
- * [ Adapt your R script to run in production] ( how-to-r-modify-script-for-production.md )
0 commit comments