Skip to content

Commit ce6247e

Browse files
committed
Update code and text
1 parent 241b27a commit ce6247e

File tree

1 file changed

+46
-1
lines changed

1 file changed

+46
-1
lines changed

articles/machine-learning/how-to-deploy-mlflow-models-online-endpoints.md

Lines changed: 46 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -543,8 +543,24 @@ version = registered_model.version
543543

544544
When your deployment is ready, you can use it to serve requests. One way to test the deployment is by using the built-in invocation capability in the deployment client that you use. In the examples repository, the sample-request-sklearn.json file contains the following JSON code. You can use it as a sample request file for the deployment.
545545

546+
# [Azure CLI](#tab/cli)
547+
546548
:::code language="json" source="~/azureml-examples-main/cli/endpoints/online/ncd/sample-request-sklearn.json":::
547549

550+
# [Python (Azure Machine Learning SDK)](#tab/sdk)
551+
552+
:::code language="json" source="~/azureml-examples-main/sdk/python/endpoints/online/mlflow/sample-request-sklearn.json":::
553+
554+
# [Python (MLflow SDK)](#tab/mlflow)
555+
556+
:::code language="json" source="~/azureml-examples-main/sdk/python/endpoints/online/mlflow/sample-request-sklearn.json":::
557+
558+
# [Studio](#tab/studio)
559+
560+
:::code language="json" source="~/azureml-examples-main/cli/endpoints/online/ncd/sample-request-sklearn.json":::
561+
562+
---
563+
548564
> [!NOTE]
549565
> This file uses the `input_data` key instead of `inputs`, which MLflow serving uses. Azure Machine Learning requires a different input format to be able to automatically generate the swagger contracts for the endpoints. For more information about expected input formats, see [Deployment in the MLflow built-in server vs. deployment in Azure Machine Learning inferencing server](how-to-deploy-mlflow-models.md#models-deployed-in-azure-machine-learning-vs-models-deployed-in-the-mlflow-built-in-server).
550566

@@ -557,7 +573,7 @@ Submit a request to the endpoint:
557573
# [Python (Azure Machine Learning SDK)](#tab/sdk)
558574

559575
```python
560-
ml_client.online_endpoints.invoke(
576+
response = ml_client.online_endpoints.invoke(
561577
endpoint_name=endpoint_name,
562578
request_file="sample-request-sklearn.json",
563579
)
@@ -588,13 +604,42 @@ MLflow models can use the __Test__ tab to create invocations to the created endp
588604

589605
The response should be similar to the following text:
590606

607+
# [Azure CLI](#tab/cli)
608+
591609
```json
592610
[
593611
11633.100167144921,
594612
8522.117402884991
595613
]
596614
```
597615

616+
# [Python (Azure Machine Learning SDK)](#tab/sdk)
617+
618+
```json
619+
[
620+
11633.100167144921
621+
]
622+
```
623+
624+
# [Python (MLflow SDK)](#tab/mlflow)
625+
626+
```json
627+
[
628+
11633.100167144921
629+
]
630+
```
631+
632+
# [Studio](#tab/studio)
633+
634+
```json
635+
[
636+
11633.100167144921,
637+
8522.117402884991
638+
]
639+
```
640+
641+
---
642+
598643
> [!IMPORTANT]
599644
> For MLflow no-code-deployment, **[testing via local endpoints](how-to-deploy-online-endpoints.md#deploy-and-debug-locally-by-using-a-local-endpoint)** is currently not supported.
600645

0 commit comments

Comments
 (0)