You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/ai-foundry/concepts/model-lifecycle-retirement.md
+6Lines changed: 6 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -80,6 +80,12 @@ The following tables list the timelines for models that are on track for retirem
80
80
|[Cohere-rerank-v3-english](https://ai.azure.com/explore/models/Cohere-rerank-v3-english/version/1/registry/azureml-cohere)| February 28, 2025 | March 31, 2025 | June 30, 2025 |[Cohere-rerank-v3.5-english](https://ai.azure.com/explore/models/Cohere-rerank-v3.5/version/1/registry/azureml-cohere)|
81
81
|[Cohere-rerank-v3-multilingual](https://ai.azure.com/explore/models/Cohere-rerank-v3-multilingual/version/1/registry/azureml-cohere)| February 28, 2025 | March 31, 2025 | June 30, 2025 |[Cohere-rerank-v3.5-multilingual](https://ai.azure.com/explore/models/Cohere-rerank-v3.5/version/1/registry/azureml-cohere)|
82
82
83
+
#### DeepSeek
84
+
85
+
| Model | Legacy date (UTC) | Deprecation date (UTC) | Retirement date (UTC) | Suggested replacement model |
|[DeepSeek-V3](https://aka.ms/azureai/landing/DeepSeek-V3)| April 10, 2025 | May 31, 2025 | August 31, 2025 |[DeepSeek-V3-0324](https://aka.ms/azureai/landing/DeepSeek-V3-0324)|
88
+
83
89
#### Meta
84
90
85
91
| Model | Legacy date (UTC) | Deprecation date (UTC) | Retirement date (UTC) | Suggested replacement model |
Copy file name to clipboardExpand all lines: articles/ai-foundry/concepts/models-featured.md
+6-2Lines changed: 6 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -141,11 +141,12 @@ For more examples of how to use Jais models, see the following examples:
141
141
142
142
## DeepSeek
143
143
144
-
DeepSeek family of models includes DeepSeek-R1, which excels at reasoning tasks using a step-by-step training process, such as language, scientific reasoning, and coding tasks, and DeepSeek-V3, a Mixture-of-Experts (MoE) language model.
144
+
DeepSeek family of models includes DeepSeek-R1, which excels at reasoning tasks using a step-by-step training process, such as language, scientific reasoning, and coding tasks, DeepSeek-V3-0324, a Mixture-of-Experts (MoE) language model, and more.
145
145
146
146
| Model | Type | Capabilities |
147
147
| ------ | ---- | --- |
148
-
|[DeepSeek-V3](https://ai.azure.com/explore/models/deepseek-v3/version/1/registry/azureml-deepseek)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (131,072 tokens) <br /> - **Output:** text (131,072 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text, JSON |
|[DeepSeek-V3](https://ai.azure.com/explore/models/deepseek-v3/version/1/registry/azureml-deepseek) <br />(Legacy) |[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (131,072 tokens) <br /> - **Output:** text (131,072 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text, JSON |
149
150
|[DeepSeek-R1](https://ai.azure.com/explore/models/deepseek-r1/version/1/registry/azureml-deepseek)|[chat-completion with reasoning content](../model-inference/how-to/use-chat-reasoning.md?context=/azure/ai-foundry/context/context)| - **Input:** text (163,840 tokens) <br /> - **Output:** text (163,840 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text. |
150
151
151
152
For a tutorial on DeepSeek-R1, see [Tutorial: Get started with DeepSeek-R1 reasoning model in Azure AI model inference](../model-inference/tutorials/get-started-deepseek-r1.md?context=/azure/ai-foundry/context/context).
@@ -171,9 +172,12 @@ Meta Llama models and tools are a collection of pretrained and fine-tuned genera
171
172
- Small language models (SLMs) like 1B and 3B Base and Instruct models for on-device and edge inferencing
172
173
- Mid-size large language models (LLMs) like 7B, 8B, and 70B Base and Instruct models
173
174
- High-performant models like Meta Llama 3.1-405B Instruct for synthetic data generation and distillation use cases.
175
+
- High-performant natively multimodal models, Llama 4 Scout and Llama 4 Maverick, leverage a mixture-of-experts architecture to offer industry-leading performance in text and image understanding.
174
176
175
177
| Model | Type | Capabilities |
176
178
| ------ | ---- | ------------ |
179
+
|[Llama-4-Scout-17B-16E-Instruct](https://aka.ms/aifoundry/landing/llama-4-scout-17b-16e-instruct)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text and image (128,000 tokens) <br /> - **Output:** text (8,192 tokens) <br /> - **Tool calling:** Yes <br /> - **Response formats:** Text |
180
+
|[Llama 4-Maverick-17B-128E-Instruct-FP8](https://aka.ms/aifoundry/landing/llama-4-maverick-17b-128e-instruct-fp8)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text and image (128,000 tokens) <br /> - **Output:** text (8,192 tokens) <br /> - **Tool calling:** Yes <br /> - **Response formats:** Text |
177
181
|[Llama-3.3-70B-Instruct](https://ai.azure.com/explore/models/Llama-3.3-70B-Instruct/version/4/registry/azureml-meta)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (128,000 tokens) <br /> - **Output:** text (8,192 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
178
182
|[Llama-3.2-90B-Vision-Instruct](https://ai.azure.com/explore/models/Llama-3.2-90B-Vision-Instruct/version/1/registry/azureml-meta)|[chat-completion (with images)](../model-inference/how-to/use-chat-multi-modal.md?context=/azure/ai-foundry/context/context)| - **Input:** text and image (128,000 tokens) <br /> - **Output:** text (8,192 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
179
183
|[Llama-3.2-11B-Vision-Instruct](https://ai.azure.com/explore/models/Llama-3.2-11B-Vision-Instruct/version/1/registry/azureml-meta)|[chat-completion (with images)](../model-inference/how-to/use-chat-multi-modal.md?context=/azure/ai-foundry/context/context)| - **Input:** text and image (128,000 tokens) <br /> - **Output:** text (8,192 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
Copy file name to clipboardExpand all lines: articles/ai-foundry/model-inference/concepts/models.md
+2-1Lines changed: 2 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -110,7 +110,8 @@ DeepSeek family of models includes DeepSeek-R1, which excels at reasoning tasks
110
110
| Model | Type | Tier | Capabilities |
111
111
| ------ | ---- | --- | ------------ |
112
112
|[DeekSeek-R1](https://ai.azure.com/explore/models/deepseek-r1/version/1/registry/azureml-deepseek)| chat-completion <br /> [(with reasoning content)](../how-to/use-chat-reasoning.md)| Global standard | - **Input:** text (163,840 tokens) <br /> - **Output:** (163,840 tokens) <br /> - **Languages:**`en` and `zh` <br /> - **Tool calling:** No <br /> - **Response formats:** Text. |
113
-
|[DeekSeek-V3](https://ai.azure.com/explore/models/deepseek-v3/version/1/registry/azureml-deepseek)| chat-completion | Global standard | - **Input:** text (131,072 tokens) <br /> - **Output:** (131,072 tokens) <br /> - **Languages:**`en` and `zh` <br /> - **Tool calling:** No <br /> - **Response formats:** Text, JSON |
113
+
|[DeekSeek-V3](https://ai.azure.com/explore/models/deepseek-v3/version/1/registry/azureml-deepseek) <br />(Legacy) | chat-completion | Global standard | - **Input:** text (131,072 tokens) <br /> - **Output:** (131,072 tokens) <br /> - **Languages:**`en` and `zh` <br /> - **Tool calling:** No <br /> - **Response formats:** Text, JSON |
114
+
|[DeekSeek-V3-0324](https://ai.azure.com/explore/models/deepseek-v3-0324/version/1/registry/azureml-deepseek)| chat-completion | Global standard | - **Input:** text (131,072 tokens) <br /> - **Output:** (131,072 tokens) <br /> - **Languages:**`en` and `zh` <br /> - **Tool calling:** No <br /> - **Response formats:** Text, JSON |
114
115
115
116
For a tutorial on DeepSeek-R1, see [Tutorial: Get started with DeepSeek-R1 reasoning model in Azure AI model inference](../tutorials/get-started-deepseek-r1.md).
4. Let's see first which models are available to you and under which SKU. The following command list all the model definitions available:
60
+
4. Let's see first which models are available to you and under which SKU. SKUs, also known as [deployment types](../../concepts/deployment-types.md), define how Azure infrastructure is used to process requests. Models may offer different deployment types. The following command list all the model definitions available:
60
61
61
62
```azurecli
62
63
az cognitiveservices account list-models \
@@ -77,10 +78,7 @@ To add a model, you first need to identify the model that you want to deploy. Yo
77
78
}
78
79
```
79
80
80
-
6. Identify the model you want to deploy. You need the properties `name`, `format`, `version`, and `sku`. Capacity might also be needed depending on the type of deployment.
81
-
82
-
> [!TIP]
83
-
> Notice that not all the models are available in all the SKUs.
81
+
6. Identify the model you want to deploy. You need the properties `name`, `format`, `version`, and `sku`. The property `format` indicates the provider offering the model. Capacity might also be needed depending on the type of deployment.
84
82
85
83
7. Add the model deployment to the resource. The following example adds `Phi-3.5-vision-instruct`:
Copy file name to clipboardExpand all lines: articles/ai-services/agents/how-to/tools/fabric.md
+2Lines changed: 2 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -34,6 +34,8 @@ You need to first build and publish a Fabric data agent and then connect your Fa
34
34
35
35
* Developers and end users have at least `READ` access to the Fabric data agent and the underlying data sources it connects with.
36
36
37
+
* Your Fabric Data Agent and Azure AI Agent need to be in the same tenant.
38
+
37
39
## Setup
38
40
> [!NOTE]
39
41
> * The model you selected in Azure AI Agent setup is only used for agent orchestration and response generation. It doesn't impact which model Fabric data agent uses for NL2SQL operation.
0 commit comments