Skip to content

Commit d80b431

Browse files
committed
freshness updates
1 parent 7a20e19 commit d80b431

File tree

1 file changed

+8
-9
lines changed

1 file changed

+8
-9
lines changed

articles/machine-learning/tutorial-azure-ml-in-a-day.md

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: quickstart
99
author: sdgilley
1010
ms.author: sgilley
1111
ms.reviewer: sgilley
12-
ms.date: 10/20/2023
12+
ms.date: 09/03/2024
1313
ms.custom:
1414
- sdkv2
1515
- build-2023
@@ -55,7 +55,7 @@ Watch this video for an overview of the steps in this quickstart.
5555

5656
[!INCLUDE [notebook set kernel](includes/prereq-set-kernel.md)]
5757

58-
<!-- nbstart https://raw.githubusercontent.com/Azure/azureml-examples/sdg-serverless/tutorials/get-started-notebooks/quickstart.ipynb -->
58+
<!-- nbstart https://raw.githubusercontent.com/Azure/azureml-examples/main/tutorials/get-started-notebooks/quickstart.ipynb -->
5959

6060
## Create handle to workspace
6161

@@ -78,9 +78,9 @@ from azure.identity import DefaultAzureCredential
7878
# authenticate
7979
credential = DefaultAzureCredential()
8080

81-
SUBSCRIPTION="<SUBSCRIPTION_ID>"
82-
RESOURCE_GROUP="<RESOURCE_GROUP>"
83-
WS_NAME="<AML_WORKSPACE_NAME>"
81+
SUBSCRIPTION = "<SUBSCRIPTION_ID>"
82+
RESOURCE_GROUP = "<RESOURCE_GROUP>"
83+
WS_NAME = "<AML_WORKSPACE_NAME>"
8484
# Get a handle to the workspace
8585
ml_client = MLClient(
8686
credential=credential,
@@ -95,10 +95,10 @@ ml_client = MLClient(
9595
9696

9797
```python
98-
# Verify that the handle works correctly.
98+
# Verify that the handle works correctly.
9999
# If you ge an error here, modify your SUBSCRIPTION, RESOURCE_GROUP, and WS_NAME in the previous cell.
100100
ws = ml_client.workspaces.get(WS_NAME)
101-
print(ws.location,":", ws.resource_group)
101+
print(ws.location, ":", ws.resource_group)
102102
```
103103

104104
## Create training script
@@ -238,7 +238,6 @@ You might need to select **Refresh** to see the new folder and script in your **
238238
Now that you have a script that can perform the desired tasks, and a compute cluster to run the script, you'll use a general purpose **command** that can run command line actions. This command line action can directly call system commands or run a script.
239239

240240
Here, you'll create input variables to specify the input data, split ratio, learning rate and registered model name. The command script will:
241-
242241
* Use an *environment* that defines software and runtime libraries needed for the training script. Azure Machine Learning provides many curated or ready-made environments, which are useful for common training and inference scenarios. You'll use one of those environments here. In [Tutorial: Train a model in Azure Machine Learning](tutorial-train-model.md), you'll learn how to create a custom environment.
243242
* Configure the command line action itself - `python main.py` in this case. The inputs/outputs are accessible in the command via the `${{ ... }}` notation.
244243
* In this sample, we access the data from a file on the internet.
@@ -263,7 +262,7 @@ job = command(
263262
),
264263
code="./src/", # location of source code
265264
command="python main.py --data ${{inputs.data}} --test_train_ratio ${{inputs.test_train_ratio}} --learning_rate ${{inputs.learning_rate}} --registered_model_name ${{inputs.registered_model_name}}",
266-
environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
265+
environment="azureml://registries/azureml/environments/sklearn-1.5/labels/latest",
267266
display_name="credit_default_prediction",
268267
)
269268
```

0 commit comments

Comments
 (0)