You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This example uses the model trained on the [multi-label fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multilabel-task-fridge-items).
357
+
This example uses the model trained on the [multi-label fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-classification/multilabelFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on model training for multi-label image classification, see the [multi-label image classification notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-classification-multilabel-task-fridge-items).
358
358
359
359
### Input format
360
360
@@ -375,8 +375,7 @@ The output is an array of logits for all the classes/labels.
375
375
376
376
377
377
# [Object detection with Faster R-CNN or RetinaNet](#tab/object-detect-cnn)
378
-
379
-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
378
+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains Faster R-CNN models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
380
379
381
380
### Input format
382
381
@@ -408,7 +407,7 @@ The following table describes boxes, labels, and scores returned for each sample
408
407
409
408
# [Object detection with YOLO](#tab/object-detect-yolo)
410
409
411
-
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
410
+
This object detection example uses the model trained on the [fridgeObjects detection dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) of 128 images and 4 classes/labels to explain ONNX model inference. This example trains YOLO models to demonstrate inference steps. For more information on training object detection models, see the [object detection notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items).
412
411
413
412
### Input format
414
413
@@ -430,7 +429,7 @@ Each cell in the list indicates box detections of a sample with shape `(n_boxes,
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjectsMask.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-instance-segmentation-task-fridge-items).
432
+
For this instance segmentation example, you use the Mask R-CNN model that has been trained on the [fridgeObjects dataset](https://automlsamplenotebookdata.blob.core.windows.net/image-object-detection/odFridgeObjects.zip) with 128 images and 4 classes/labels to explain ONNX model inference. For more information on training of the instance segmentation model, see the [instance segmentation notebook](https://github.com/Azure/azureml-examples/tree/main/sdk/python/jobs/automl-standalone-jobs/automl-image-instance-segmentation-task-fridge-items).
434
433
435
434
>[!IMPORTANT]
436
435
> Only Mask R-CNN is supported for instance segmentation tasks. The input and output formats are based on Mask R-CNN only.
0 commit comments