Skip to content

Commit e4e8cb9

Browse files
committed
Merge branch 'main' into release-preview-new-mistral-models
2 parents 386697e + 56bb780 commit e4e8cb9

20 files changed

+160
-65
lines changed

articles/ai-services/content-safety/overview.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ To use the Content Safety APIs, you must create your Azure AI Content Safety res
155155
|--------------------|--------------------|--------------------|-------|-----------------|-------------------|---------------|---------------------------|---------------------------|------|-------------|
156156
| Australia East || || |||||||
157157
| Canada East | | || |||||||
158-
| Central US | | || || |||||
158+
| Central US | | || || |||||
159159
| East US || |||||||||
160160
| East US 2 | ||| |||||||
161161
| France Central | ||| |||||||

articles/ai-services/language-service/personally-identifiable-information/includes/identification-entities.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1922,13 +1922,13 @@ The following entities are grouped and listed by country/region:
19221922
:::column-end:::
19231923
:::column span="2":::
19241924

1925-
To get this entity category, add `UKNationalInsuranceNumber` to the `piiCategories` parameter. `UKNationalInsuranceNumber` will be returned in the API response if detected.
1925+
To get this entity category, add `UKElectoralRollNumber` to the `piiCategories` parameter. `UKElectoralRollNumber` will be returned in the API response if detected.
19261926
19271927
Also returned with `domain=phi`.
19281928
:::column-end:::
19291929
:::column span="":::
19301930

1931-
`en`
1931+
`en`, `es`, `fr`, `de`, `it`, `pt-pt`, `pt-br`, `zh`, `ja`, `ko`, `nl`, `sv`, `tr`, `hi`, `da`, `nl`, `no`, `ro`, `ar`, `bg`, `hr`, `ms`, `ru`, `sl`, `cs`, `et`, `fi`, `he`, `hu`, `lv`, `sk`, `th`, `uk`
19321932
19331933
:::column-end:::
19341934
:::row-end:::

articles/ai-studio/how-to/develop/ai-template-get-started.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,8 +35,8 @@ Start with our sample applications! Choose the right template for your needs, th
3535
| [Process Automation: speech to text and summarization with Azure AI Foundry](https://github.com/Azure-Samples/summarization-openai-python-prompflow) | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure Managed Identity](/entra/identity/managed-identities-azure-resources/overview), [Azure OpenAI Service](../../../ai-services/openai/overview.md), [Azure AI speech to text service](../../../ai-services/speech-service/index-speech-to-text.yml), Bicep | An app for workers to report issues via text or speech, translating audio to text, summarizing it, and specify the relevant department. |
3636
| [Multi-Modal Creative Writing copilot with Dalle](https://github.com/Azure-Samples/agent-openai-python-prompty) | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure AI Search](/azure/search/search-what-is-azure-search), [Azure OpenAI Service](../../../ai-services/openai/overview.md), Bicep | demonstrates how to create and work with AI agents. The app takes a topic and instruction input and then calls a research agent, writer agent, and editor agent. |
3737
| [Assistant API Analytics Copilot with Python and Azure AI Foundry](https://github.com/Azure-Samples/assistant-data-openai-python-promptflow) | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure Managed Identity](/entra/identity/managed-identities-azure-resources/overview), [Azure AI Search](/azure/search/search-what-is-azure-search), [Azure OpenAI Service](../../../ai-services/openai/overview.md), Bicep| A data analytics chatbot based on the Assistants API. The chatbot can answer questions in natural language, and interpret them as queries on an example sales dataset. |
38-
| [Function Calling with Prompty, LangChain, and Pinecone](https://github.com/Azure-Samples/agent-openai-python-prompty-langchain-pinecone) | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure Managed Identity](/entra/identity/managed-identities-azure-resources/overview), [Azure OpenAI Service](../../../ai-services/openai/overview.md), [LangChain](https://python.langchain.com/v0.1/docs/get_started/introduction), [Pinecone](https://www.pinecone.io/), Bicep | Utilize the new Prompty tool, LangChain, and Pinecone to build a large language model (LLM) search agent. This agent with Retrieval-Augmented Generation (RAG) technology is capable of answering user questions based on the provided data by integrating real-time information retrieval with generative responses. |
39-
| [Function Calling with Prompty, LangChain, and Elastic Search](https://github.com/Azure-Samples/agent-python-openai-prompty-langchain) | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure Managed Identity](/entra/identity/managed-identities-azure-resources/overview), [Azure OpenAI Service](../../../ai-services/openai/overview.md), [Elastic Search](https://www.elastic.co/elasticsearch), [LangChain](https://python.langchain.com/v0.1/docs/get_started/introduction) , Bicep | Utilize the new Prompty tool, LangChain, and Elasticsearch to build a large language model (LLM) search agent. This agent with Retrieval-Augmented Generation (RAG) technology is capable of answering user questions based on the provided data by integrating real-time information retrieval with generative responses |
38+
| Function Calling with Prompty, LangChain, and Pinecone | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure Managed Identity](/entra/identity/managed-identities-azure-resources/overview), [Azure OpenAI Service](../../../ai-services/openai/overview.md), [LangChain](https://python.langchain.com/v0.1/docs/get_started/introduction), [Pinecone](https://www.pinecone.io/), Bicep | Utilize the new Prompty tool, LangChain, and Pinecone to build a large language model (LLM) search agent. This agent with Retrieval-Augmented Generation (RAG) technology is capable of answering user questions based on the provided data by integrating real-time information retrieval with generative responses. |
39+
| Function Calling with Prompty, LangChain, and Elastic Search | [Azure AI Foundry online endpoints](/azure/machine-learning/concept-endpoints-online) | [Azure Managed Identity](/entra/identity/managed-identities-azure-resources/overview), [Azure OpenAI Service](../../../ai-services/openai/overview.md), [Elastic Search](https://www.elastic.co/elasticsearch), [LangChain](https://python.langchain.com/v0.1/docs/get_started/introduction) , Bicep | Utilize the new Prompty tool, LangChain, and Elasticsearch to build a large language model (LLM) search agent. This agent with Retrieval-Augmented Generation (RAG) technology is capable of answering user questions based on the provided data by integrating real-time information retrieval with generative responses |
4040

4141
### [C#](#tab/csharp)
4242

articles/ai-studio/how-to/develop/sdk-overview.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -428,7 +428,7 @@ if application_insights_connection_string:
428428

429429
::: zone pivot="programming-language-csharp"
430430

431-
Tracing is not yet integrated into the projects package. For instructions on how to instrument and log traces from the Azure AI Inferencing package, see [azure-sdk-for-dotnet](https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/ai/Azure.AI.Inference/samples/Sample8_ChatCompletionsWithOpenTelemetry.md.).
431+
Tracing is not yet integrated into the projects package. For instructions on how to instrument and log traces from the Azure AI Inferencing package, see [azure-sdk-for-dotnet](https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/ai/Azure.AI.Inference/samples/Sample8_ChatCompletionsWithOpenTelemetry.md).
432432

433433
::: zone-end
434434

articles/ai-studio/includes/ai-services/code-create-chat-client.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ const client = new ModelClient(
5555
);
5656
```
5757

58-
Explore our [samples](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/ai/ai-inference-rest/samples) and read the [API reference documentation](https://aka.ms/AAp1kxa) to get yourself started.
58+
Explore our [samples](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/ai/ai-inference-rest/samples) and read the [API reference documentation](/azure/ai-services/openai/gpt-v-quickstart) to get yourself started.
5959

6060
# [C#](#tab/csharp)
6161

articles/ai-studio/toc.yml

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -93,8 +93,6 @@ items:
9393
href: how-to/concept-data-privacy.md
9494
- name: Model lifecycle and retirement
9595
href: concepts/model-lifecycle-retirement.md
96-
- name: Model benchmarks
97-
href: how-to/model-benchmarks.md
9896
- name: Model benchmarking
9997
items:
10098
- name: Model benchmarks

articles/ai-studio/what-is-ai-studio.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ For more information, see [Management center overview](./concepts/management-cen
7070

7171
Azure AI Foundry is monetized through individual products customer access and consume in the platform, including API and models, complete AI toolchain, and responsible AI and enterprise grade production at scale products. Each product has its own billing model and price.
7272

73-
The platform is free to use and explore. Pricing occurs at deployment level. For more information abut AI Foundry pricing, see [AI Foundry pricing](https://aka.ms/Azure-AI-Foundry-New-Pricing-Page).
73+
The platform is free to use and explore. Pricing occurs at deployment level.
7474

7575
Using AI Foundry also incurs cost associated with the underlying services. To learn more, read [Plan and manage costs for Azure AI services](./how-to/costs-plan-manage.md).
7676

articles/machine-learning/how-to-train-distributed-gpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ TF_CONFIG='{
115115

116116
### TensorFlow example
117117

118-
* For the full notebook to run the TensorFlow example, see [azureml-examples: Train a basic neural network with distributed MPI on the MNIST dataset using Tensorflow with Horovod](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/single-step/tensorflow/mnist-distributed-horovod/tensorflow-mnist-distributed-horovod.ipynb).
118+
* For the full notebook to run the TensorFlow example, see [azureml-examples: Train a basic neural network with distributed MPI on the MNIST dataset using Tensorflow with Horovod](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/single-step/tensorflow/mnist-distributed/tensorflow-mnist-distributed.ipynb).
119119

120120
## Accelerating distributed GPU training with InfiniBand
121121

articles/machine-learning/v1/how-to-monitor-datasets.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -252,7 +252,7 @@ monitor = monitor.enable_schedule()
252252
```
253253

254254
> [!TIP]
255-
> For a full example of setting up a `timeseries` dataset and data drift detector, see our [example notebook](https://aka.ms/datadrift-notebook).
255+
> For a full example of setting up a `timeseries` dataset and data drift detector, see our [example notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb).
256256
257257

258258
# [Studio](#tab/azure-studio)
@@ -573,6 +573,6 @@ Limitations and known issues for data drift monitors:
573573

574574
## Next steps
575575

576-
* Head to the [Azure Machine Learning studio](https://ml.azure.com) or the [Python notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datadrift-tutorial/datadrift-tutorial.ipynb) to set up a dataset monitor.
576+
* Head to the [Azure Machine Learning studio](https://ml.azure.com) or the [Python notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb) to set up a dataset monitor.
577577
* See how to set up data drift on [models deployed to Azure Kubernetes Service](how-to-enable-data-collection.md).
578578
* Set up dataset drift monitors with [Azure Event Grid](../how-to-use-event-grid.md).

articles/machine-learning/v1/how-to-train-tensorflow.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,9 +35,9 @@ Run this code on either of these environments:
3535
- Your own Jupyter Notebook server
3636
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
3737
- [Create a workspace configuration file](how-to-configure-environment.md).
38-
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow) `tf_mnist.py` and `utils.py`
38+
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow) `tf_mnist.py` and `utils.py`
3939

40-
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.
40+
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.
4141

4242
[!INCLUDE [gpu quota](../includes/machine-learning-gpu-quota-prereq.md)]
4343

0 commit comments

Comments
 (0)