Skip to content

Commit f169402

Browse files
committed
add other inference examples tables
1 parent dc05196 commit f169402

File tree

1 file changed

+67
-2
lines changed

1 file changed

+67
-2
lines changed

articles/ai-foundry/concepts/models-featured.md

Lines changed: 67 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ The following table lists the Cohere models that you can inference via the Azur
8787

8888
#### Inference examples: Cohere command and embed
8989

90-
For more examples of how to use Cohere models, see the following examples and tutorials:
90+
For more examples of how to use Cohere models, see the following examples:
9191

9292
| Description | Language | Sample |
9393
|-------------------------------------------|-------------------|-----------------------------------------------------------------|
@@ -100,7 +100,7 @@ For more examples of how to use Cohere models, see the following examples and tu
100100
| Cohere SDK | Python | [Command](https://aka.ms/samples/cohere-python-sdk) <br> [Embed](https://aka.ms/samples/cohere-embed/cohere-python-sdk) |
101101
| LiteLLM SDK | Python | [Link](https://github.com/Azure/azureml-examples/blob/main/sdk/python/foundation-models/cohere/litellm.ipynb) |
102102

103-
#### Retrieval Augmented Generation (RAG) and tool use samples
103+
#### Retrieval Augmented Generation (RAG) and tool use samples: Cohere command and embed
104104

105105
| Description | Packages | Sample |
106106
|-------------|------------|-----------------|
@@ -138,6 +138,17 @@ Core42 includes autoregressive bi-lingual LLMs for Arabic & English with state-o
138138

139139
See [this model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=core42).
140140

141+
#### Inference examples: Core42
142+
143+
For more examples of how to use Jais models, see the following examples:
144+
145+
| Description | Language | Sample |
146+
|-------------------------------------------|-------------------|-----------------------------------------------------------------|
147+
| Azure AI Inference package for C# | C# | [Link](https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Inference/samples) |
148+
| Azure AI Inference package for JavaScript | JavaScript | [Link](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/ai/ai-inference-rest/samples) |
149+
| Azure AI Inference package for Python | Python | [Link](https://aka.ms/azsdk/azure-ai-inference/python/samples) |
150+
151+
141152
## DeepSeek
142153

143154
DeepSeek family of models includes DeepSeek-R1, which excels at reasoning tasks using a step-by-step training process, such as language, scientific reasoning, and coding tasks, and DeepSeek-V3, a Mixture-of-Experts (MoE) language model.
@@ -149,6 +160,18 @@ DeepSeek family of models includes DeepSeek-R1, which excels at reasoning tasks
149160

150161
See [this model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=deepseek).
151162

163+
#### Inference examples: DeepSeek
164+
165+
For more examples of how to use DeepSeek models, see the following examples:
166+
167+
| Description | Language | Sample |
168+
|-------------------------------------------|-------------------|-----------------------------------------------------------------|
169+
| Azure AI Inference package for Python | Python | [Link](https://aka.ms/azsdk/azure-ai-inference/python/samples) |
170+
| Azure AI Inference package for JavaScript | JavaScript | [Link](https://aka.ms/azsdk/azure-ai-inference/javascript/samples) |
171+
| Azure AI Inference package for C# | C# | [Link](https://aka.ms/azsdk/azure-ai-inference/csharp/samples) |
172+
| Azure AI Inference package for Java | Java | [Link](https://github.com/Azure/azure-sdk-for-java/tree/main/sdk/ai/azure-ai-inference/src/samples) |
173+
174+
152175
## Meta
153176

154177
Meta Llama models and tools are a collection of pretrained and fine-tuned generative AI text and image reasoning models. Meta models range is scale to include:
@@ -171,6 +194,20 @@ Meta Llama models and tools are a collection of pretrained and fine-tuned genera
171194

172195
See [this model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=meta).
173196

197+
#### Inference examples: Meta Llama
198+
199+
For more examples of how to use Meta Llama models, see the following examples:
200+
| Description | Language | Sample |
201+
|-------------------------------------------|-------------------|------------------------------------------------------------------- |
202+
| CURL request | Bash | [Link](https://aka.ms/meta-llama-3.1-405B-instruct-webrequests) |
203+
| Azure AI Inference package for C# | C# | [Link](https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Inference/samples) |
204+
| Azure AI Inference package for JavaScript | JavaScript | [Link](https://github.com/Azure/azureml-examples/blob/main/sdk/typescript/README.md) |
205+
| Azure AI Inference package for Python | Python | [Link](https://aka.ms/azsdk/azure-ai-inference/python/samples) |
206+
| Python web requests | Python | [Link](https://aka.ms/meta-llama-3.1-405B-instruct-webrequests) |
207+
| OpenAI SDK (experimental) | Python | [Link](https://aka.ms/meta-llama-3.1-405B-instruct-openai) |
208+
| LangChain | Python | [Link](https://aka.ms/meta-llama-3.1-405B-instruct-langchain) |
209+
| LiteLLM | Python | [Link](https://aka.ms/meta-llama-3.1-405B-instruct-litellm) |
210+
174211
## Microsoft
175212

176213
Phi is a family of lightweight, state-of-the-art open models. These models were trained with Phi-3 datasets. The datasets include both synthetic data and the filtered, publicly available websites data, with a focus on high quality and reasoning-dense properties. The models underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
@@ -193,6 +230,18 @@ Phi is a family of lightweight, state-of-the-art open models. These models were
193230

194231
See [this model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=phi).
195232

233+
#### Inference examples: Microsoft Phi
234+
235+
For more examples of how to use Phi-3 family models, see the following examples:
236+
| Description | Language | Sample |
237+
|-------------------------------------------|-------------------|-----------------------------------------------------------------|
238+
| Azure AI Inference package for C# | C# | [Link](https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Inference/samples) |
239+
| Azure AI Inference package for JavaScript | JavaScript | [Link](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/ai/ai-inference-rest/samples) |
240+
| Azure AI Inference package for Python | Python | [Link](https://aka.ms/azsdk/azure-ai-inference/python/samples) |
241+
| LangChain | Python | [Link](https://aka.ms/azureai/langchain) |
242+
| Llama-Index | Python | [Link](https://aka.ms/azureai/llamaindex) |
243+
244+
196245
## Mistral AI
197246

198247
Mistral AI offers two categories of models: premium models including Mistral Large and Mistral Small and open models including Mistral Nemo.
@@ -209,6 +258,22 @@ Mistral AI offers two categories of models: premium models including Mistral Lar
209258

210259
See [this model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=mistral).
211260

261+
#### Inference examples: Mistral
262+
263+
For more examples of how to use Mistral models, see the following examples and tutorials:
264+
265+
| Description | Language | Sample |
266+
|-------------------------------------------|-------------------|-----------------------------------------------------------------|
267+
| CURL request | Bash | [Link](https://aka.ms/mistral-large/webrequests-sample) |
268+
| Azure AI Inference package for C# | C# | [Link](https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Inference/samples) |
269+
| Azure AI Inference package for JavaScript | JavaScript | [Link](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/ai/ai-inference-rest/samples) |
270+
| Azure AI Inference package for Python | Python | [Link](https://aka.ms/azsdk/azure-ai-inference/python/samples) |
271+
| Python web requests | Python | [Link](https://aka.ms/mistral-large/webrequests-sample) |
272+
| OpenAI SDK (experimental) | Python | [Mistral - OpenAI SDK sample](https://aka.ms/mistral-large/openaisdk) |
273+
| LangChain | Python | [Mistral - LangChain sample](https://aka.ms/mistral-large/langchain-sample) |
274+
| Mistral AI | Python | [Mistral - Mistral AI sample](https://aka.ms/mistral-large/mistralai-sample) |
275+
| LiteLLM | Python | [Mistral - LiteLLM sample](https://aka.ms/mistral-large/litellm-sample) |
276+
212277
## Nixtla
213278

214279
Nixtla's TimeGEN-1 is a generative pre-trained forecasting and anomaly detection model for time series data. TimeGEN-1 can produce accurate forecasts for new time series without training, using only historical values and exogenous covariates as inputs.

0 commit comments

Comments
 (0)