Skip to content

Commit fba94f4

Browse files
committed
Merge branch 'main' into release-2025-openai-march-latest
2 parents d10d23e + f1f5aad commit fba94f4

File tree

43 files changed

+131
-117
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

43 files changed

+131
-117
lines changed

articles/ai-foundry/how-to/develop/connections-add-sdk.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.custom:
88
- build-2024
99
- ignite-2024
1010
ms.topic: how-to
11-
ms.date: 12/05/2024
11+
ms.date: 03/17/2025
1212
ms.reviewer: dantaylo
1313
ms.author: larryfr
1414
author: Blackmist
-68.6 KB
Loading

articles/ai-foundry/model-inference/includes/use-image-embeddings/python.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ author: msakande
77
reviewer: santiagxf
88
ms.service: azure-ai-model-inference
99
ms.topic: how-to
10-
ms.date: 01/22/2025
10+
ms.date: 03/17/2025
1111
ms.author: mopeakande
1212
ms.reviewer: fasantia
1313
ms.custom: generated
@@ -41,7 +41,7 @@ import os
4141
from azure.ai.inference import ImageEmbeddingsClient
4242
from azure.core.credentials import AzureKeyCredential
4343

44-
model = ImageEmbeddingsClient(
44+
client = ImageEmbeddingsClient(
4545
endpoint=os.environ["AZURE_INFERENCE_ENDPOINT"],
4646
credential=AzureKeyCredential(os.environ["AZURE_INFERENCE_CREDENTIAL"]),
4747
model="Cohere-embed-v3-english"
@@ -55,7 +55,7 @@ import os
5555
from azure.ai.inference import ImageEmbeddingsClient
5656
from azure.identity import DefaultAzureCredential
5757

58-
model = ImageEmbeddingsClient(
58+
client = ImageEmbeddingsClient(
5959
endpoint=os.environ["AZURE_INFERENCE_ENDPOINT"],
6060
credential=DefaultAzureCredential(),
6161
model="Cohere-embed-v3-english"
@@ -70,7 +70,7 @@ To create image embeddings, you need to pass the image data as part of your requ
7070
from azure.ai.inference.models import ImageEmbeddingInput
7171

7272
image_input= ImageEmbeddingInput.load(image_file="sample1.png", image_format="png")
73-
response = model.embed(
73+
response = client.embed(
7474
input=[ image_input ],
7575
)
7676
```
@@ -102,7 +102,7 @@ Some models can generate embeddings from images and text pairs. In this case, yo
102102
```python
103103
text_image_input= ImageEmbeddingInput.load(image_file="sample1.png", image_format="png")
104104
text_image_input.text = "A cute baby sea otter"
105-
response = model.embed(
105+
response = client.embed(
106106
input=[ text_image_input ],
107107
)
108108
```
@@ -117,7 +117,7 @@ The following example shows how to create embeddings that are used to create an
117117
```python
118118
from azure.ai.inference.models import EmbeddingInputType
119119

120-
response = model.embed(
120+
response = client.embed(
121121
input=[ image_input ],
122122
input_type=EmbeddingInputType.DOCUMENT,
123123
)
@@ -129,7 +129,7 @@ When you work on a query to retrieve such a document, you can use the following
129129
```python
130130
from azure.ai.inference.models import EmbeddingInputType
131131

132-
response = model.embed(
132+
response = client.embed(
133133
input=[ image_input ],
134134
input_type=EmbeddingInputType.QUERY,
135135
)

articles/ai-foundry/model-inference/overview.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,9 +37,9 @@ To see details for each model including, language, types, and capabilities, see
3737
| [Azure OpenAI](concepts/models.md#azure-openai) | - o3-mini <br /> - o1 <br /> - gpt-4o <br /> - o1-preview <br /> - o1-mini <br /> - gpt-4o-mini <br /> - text-embedding-3-large <br /> - text-embedding-3-small <br /> |
3838
| [Cohere](concepts/models.md#cohere) | - Cohere-embed-v3-english <br /> - Cohere-embed-v3-multilingual <br /> - Cohere-command-r-plus-08-2024 <br /> - Cohere-command-r-08-2024 <br /> - Cohere-command-r-plus <br /> - Cohere-command-r <br /> |
3939
| [Core42](concepts/models.md#core42) | - jais-30b-chat <br /> |
40-
| [DeepSeek](concepts/models.md#deepseek) | - DeepSeek-R1 |
40+
| [DeepSeek](concepts/models.md#deepseek) | - DeepSeek-V3 <br /> - DeepSeek-R1 <br /> |
4141
| [Meta](concepts/models.md#meta) | - Llama-3.3-70B-Instruct <br /> - Llama-3.2-11B-Vision-Instruct <br /> - Llama-3.2-90B-Vision-Instruct <br /> - Meta-Llama-3.1-405B-Instruct <br /> - Meta-Llama-3-8B-Instruct <br /> - Meta-Llama-3.1-70B-Instruct <br /> - Meta-Llama-3.1-8B-Instruct <br /> - Meta-Llama-3-70B-Instruct <br /> |
42-
| [Microsoft](concepts/models.md#microsoft) | - Phi-3-mini-128k-instruct <br /> - Phi-3-mini-4k-instruct <br /> - Phi-3-small-8k-instruct <br /> - Phi-3-medium-128k-instruct <br /> - Phi-3-medium-4k-instruct <br /> - Phi-3.5-vision-instruct <br /> - Phi-3.5-MoE-instruct <br /> - Phi-3-small-128k-instruct <br /> - Phi-3.5-mini-instruct <br /> - Phi-4 <br /> |
42+
| [Microsoft](concepts/models.md#microsoft) | - Phi-4-multimodal-instruct <br /> - Phi-4-mini-instruct <br /> - Phi-4 <br /> - Phi-3-mini-128k-instruct <br /> - Phi-3-mini-4k-instruct <br /> - Phi-3-small-8k-instruct <br /> - Phi-3-medium-128k-instruct <br /> - Phi-3-medium-4k-instruct <br /> - Phi-3.5-vision-instruct <br /> - Phi-3.5-MoE-instruct <br /> - Phi-3-small-128k-instruct <br /> - Phi-3.5-mini-instruct <br /> |
4343
| [Mistral AI](concepts/models.md#mistral-ai) | - Ministral-3B <br /> - Mistral-large <br /> - Mistral-small <br /> - Mistral-Nemo <br /> - Mistral-large-2407 <br /> - Mistral-Large-2411 <br /> - Codestral-2501 <br /> |
4444
| [NTT Data](concepts/models.md#ntt-data) | - Tsuzumi-7b |
4545

articles/ai-services/includes/quickstarts/management-azportal.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ To create an Azure AI services resource follow these instructions:
4848
4949
## Clean up resources
5050

51-
If you want to clean up and remove an Azure AI services subscription, you can delete the resource or resource group. Deleting the resource group also deletes any other resources contained in the group.
51+
If you want to clean up and remove an Azure AI services resource, you can delete the resource or resource group. Deleting the resource group also deletes any other resources contained in the group.
5252

5353
1. In the Azure portal, expand the menu on the left side to open the menu of services, and choose **Resource Groups** to display the list of your resource groups.
5454
1. Locate the resource group containing the resource to be deleted.
-55.5 KB
Loading
340 KB
Loading

articles/ai-services/multi-service-resource.md

Lines changed: 30 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,11 +67,40 @@ The multi-service resource enables access to the following Azure AI services wit
6767

6868
::: zone-end
6969

70+
## Azure AI services resource for Azure AI Search skills
71+
72+
Azure AI Search skills don't support the multi-service resource as described previously in this article. You must create a different kind of Azure AI services resource for Azure AI Search skills.
73+
74+
The multi-service resource that you can use with Azure AI Search skills is listed under **Azure AI services** > **Azure AI services multi-service account** in the portal. Look for the logo as shown here:
75+
76+
:::image type="content" source="./media/cognitive-services-resource-portal.png" alt-text="Screenshot of the Azure AI services multi-service account in the Azure portal." lightbox="./media/cognitive-services-resource-portal.png":::
77+
78+
> [!IMPORTANT]
79+
> Azure provides more than one resource kinds named Azure AI services. Be sure to select the one that is listed under **Azure AI services** > **Azure AI services multi-service account** with the logo as shown previously.
80+
81+
To create an Azure AI services resource follow these instructions:
82+
1. Select this link to create an **Azure AI services multi-service account** resource: [https://portal.azure.com/#create/Microsoft.CognitiveServicesAllInOne](https://portal.azure.com/#create/Microsoft.CognitiveServicesAllInOne)
83+
84+
1. On the **Create** page, provide the following information:
85+
86+
|Project details| Description |
87+
|--|--|
88+
| **Subscription** | Select one of your available Azure subscriptions. |
89+
| **Resource group** | The Azure resource group that will contain your Azure AI services multi-service account resource. You can create a new group or add it to a pre-existing group. |
90+
| **Region** | The location of your Azure AI services multi-service account instance. Different locations may introduce latency, but have no impact on the runtime availability of your resource. |
91+
| **Name** | A descriptive name for your Azure AI services multi-service account resource. For example, *MyCognitiveServicesResource*. |
92+
| **Pricing tier** | The cost of your Azure AI services multi-service account depends on the options you choose and your usage. For more information, see the API [pricing details](https://azure.microsoft.com/pricing/details/cognitive-services/). |
93+
94+
1. Configure other settings for your resource as needed, read and accept the conditions (as applicable), and then select **Review + create**.
95+
96+
> [!TIP]
97+
> If your subscription doesn't allow you to create an Azure AI services resource, you might need to enable the privilege of that [Azure resource provider](/azure/azure-resource-manager/management/resource-providers-and-types#register-resource-provider) using the [Azure portal](/azure/azure-resource-manager/management/resource-providers-and-types#azure-portal), [PowerShell command](/azure/azure-resource-manager/management/resource-providers-and-types#azure-powershell) or an [Azure CLI command](/azure/azure-resource-manager/management/resource-providers-and-types#azure-cli). If you are not the subscription owner, ask someone with the role of *Owner* or *Admin* to complete the registration for you or ask for the **/register/action** privileges to be granted to your account.
98+
7099
## Pricing
71100

72101
[!INCLUDE [SKUs and pricing](./includes/quickstarts/sku-pricing.md)]
73102

74103
## Related content
75104

76-
- Go to the [Azure AI services hub](../ai-services/index.yml).
105+
- Go to the [Azure AI services hub page](../ai-services/index.yml).
77106
- Try AI services in the [Azure AI Foundry portal](../ai-foundry/ai-services/how-to/connect-ai-services.md).

articles/ai-services/openai/how-to/fine-tuning-deploy.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ deploy_data = {
5656
"properties": {
5757
"model": {
5858
"format": "OpenAI",
59-
"name": <"fine_tuned_model">, #retrieve this value from the previous call, it will look like gpt-35-turbo-0613.ft-b044a9d3cf9c4228b5d393567f693b83
59+
"name": <"fine_tuned_model">, #retrieve this value from the previous call, it will look like gpt-35-turbo-0125.ft-b044a9d3cf9c4228b5d393567f693b83
6060
"version": "1"
6161
}
6262
}
@@ -82,7 +82,7 @@ print(r.json())
8282
| resource_group | The resource group name for your Azure OpenAI resource. |
8383
| resource_name | The Azure OpenAI resource name. |
8484
| model_deployment_name | The custom name for your new fine-tuned model deployment. This is the name that will be referenced in your code when making chat completion calls. |
85-
| fine_tuned_model | Retrieve this value from your fine-tuning job results in the previous step. It will look like `gpt-35-turbo-0613.ft-b044a9d3cf9c4228b5d393567f693b83`. You will need to add that value to the deploy_data json. Alternatively you can also deploy a checkpoint, by passing the checkpoint ID which will appear in the format `ftchkpt-e559c011ecc04fc68eaa339d8227d02d` |
85+
| fine_tuned_model | Retrieve this value from your fine-tuning job results in the previous step. It will look like `gpt-35-turbo-0125.ft-b044a9d3cf9c4228b5d393567f693b83`. You will need to add that value to the deploy_data json. Alternatively you can also deploy a checkpoint, by passing the checkpoint ID which will appear in the format `ftchkpt-e559c011ecc04fc68eaa339d8227d02d` |
8686

8787
### Cross region deployment
8888

@@ -122,7 +122,7 @@ deploy_data = {
122122
"properties": {
123123
"model": {
124124
"format": "OpenAI",
125-
"name": <"FINE_TUNED_MODEL_NAME">, # This value will look like gpt-35-turbo-0613.ft-0ab3f80e4f2242929258fff45b56a9ce
125+
"name": <"FINE_TUNED_MODEL_NAME">, # This value will look like gpt-35-turbo-0125.ft-0ab3f80e4f2242929258fff45b56a9ce
126126
"version": "1",
127127
"source": source
128128
}
@@ -220,7 +220,7 @@ curl -X POST "https://management.azure.com/subscriptions/<SUBSCRIPTION>/resource
220220
| resource_group | The resource group name for your Azure OpenAI resource. |
221221
| resource_name | The Azure OpenAI resource name. |
222222
| model_deployment_name | The custom name for your new fine-tuned model deployment. This is the name that will be referenced in your code when making chat completion calls. |
223-
| fine_tuned_model | Retrieve this value from your fine-tuning job results in the previous step. It will look like `gpt-35-turbo-0613.ft-b044a9d3cf9c4228b5d393567f693b83`. You'll need to add that value to the deploy_data json. Alternatively you can also deploy a checkpoint, by passing the checkpoint ID which will appear in the format `ftchkpt-e559c011ecc04fc68eaa339d8227d02d` |
223+
| fine_tuned_model | Retrieve this value from your fine-tuning job results in the previous step. It will look like `gpt-35-turbo-0125.ft-b044a9d3cf9c4228b5d393567f693b83`. You'll need to add that value to the deploy_data json. Alternatively you can also deploy a checkpoint, by passing the checkpoint ID which will appear in the format `ftchkpt-e559c011ecc04fc68eaa339d8227d02d` |
224224

225225

226226
### Cross region deployment

articles/ai-services/openai/how-to/monitor-openai.md

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,12 @@ ms.service: azure-ai-openai
1515

1616
## Dashboards
1717

18-
Azure OpenAI provides out-of-box dashboards for each of your Azure OpenAI resources. To access the monitoring dashboards sign-in to [https://portal.azure.com](https://portal.azure.com) and select the overview pane for one of your Azure OpenAI resources.
18+
Azure OpenAI provides out-of-box dashboards for each of your Azure OpenAI resources. There are two key dashboards to monitor your resource:
19+
20+
- The metrics dashboard in the AI Foundry Azure OpenAI resource view
21+
- The dashboard in the overview pane within the Azure portal
22+
23+
To access the monitoring dashboards, sign in to the [Azure portal](https://portal.azure.com) and then select the overview pane for one of your Azure OpenAI resources. To see the AI Foundry metrics dashboard from the Azure portal, select the overview pane and **Go to Azure AI Foundry portal**. Under tools, select the metrics dashboard.
1924

2025
:::image type="content" source="../media/monitoring/dashboard.png" alt-text="Screenshot that shows out-of-box dashboards for an Azure OpenAI resource in the Azure portal." lightbox="../media/monitoring/dashboard.png" border="false":::
2126

0 commit comments

Comments
 (0)