Skip to content

Commit fc2c3e2

Browse files
committed
minor cx
1 parent b291167 commit fc2c3e2

File tree

1 file changed

+15
-5
lines changed

1 file changed

+15
-5
lines changed

articles/machine-learning/how-to-troubleshoot-online-endpoints.md

Lines changed: 15 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.subservice: inferencing
88
author: msakande
99
ms.author: mopeakande
1010
ms.reviewer: sehan
11-
ms.date: 09/23/2024
11+
ms.date: 09/25/2024
1212
ms.topic: troubleshooting
1313
ms.custom: devplatv2, devx-track-azurecli, cliv2, sdkv2
1414
#Customer intent: As a data scientist, I want to figure out why my online endpoint deployment failed so that I can fix it.
@@ -34,10 +34,12 @@ The [HTTP status codes](#http-status-codes) section explains how invocation and
3434

3535
# [Azure CLI](#tab/cli)
3636

37+
- An Azure Machine Learning workspace.
3738
- The [Azure CLI](/cli/azure/install-azure-cli) and Azure Machine Learning CLI v2. [Install, set up, and use the CLI (v2)](how-to-configure-cli.md).
3839

3940
# [Python SDK](#tab/python)
4041

42+
- An Azure Machine Learning workspace.
4143
- The Azure Machine Learning Python SDK v2. [Install the Azure Machine Learning SDK v2 for Python](/python/api/overview/azure/ai-ml-readme).
4244

4345
### [Studio](#tab/studio)
@@ -316,16 +318,20 @@ Due to a lack of Azure Machine Learning capacity in the region, the service fail
316318

317319
To run the *score.py* file you provide as part of the deployment, Azure creates a container that includes all the resources that the *score.py* needs. Azure Machine Learning then runs the scoring script on that container. If your container can't start, scoring can't happen. The container might be requesting more resources than the `instance_type` can support. Consider updating the `instance_type` of the online deployment.
318320

319-
To get the exact reason for the error, run the following command:
321+
To get the exact reason for the error, take the following action.
320322

321323
# [Azure CLI](#tab/cli)
322324

325+
Run the following command:
326+
323327
```azurecli
324328
az ml online-deployment get-logs -e <endpoint-name> -n <deployment-name> -l 100
325329
```
326330

327331
# [Python SDK](#tab/python)
328332

333+
Run the following command:
334+
329335
```python
330336
ml_client.online_deployments.get_logs(
331337
name="<deployment-name>", endpoint_name="<endpoint-name>", lines=100
@@ -385,23 +391,27 @@ az acr repository show-tags -n testacr --repository azureml/azureml_92a029f831ce
385391

386392
The user model might not be found. [Check the container logs](#get-container-logs) to get more details. Make sure you registered the model to the same workspace as the deployment.
387393

388-
To show details for a model in a workspace, run the following command. You must specify either version or label to get the model information.
394+
To show details for a model in a workspace, take the following action. You must specify either version or label to get the model information.
389395

390396
# [Azure CLI](#tab/cli)
391397

392-
```azurecli
398+
Run the following command:
399+
400+
```azurecli
393401
az ml model show --name <model-name> --version <version>
394402
```
395403

396404
# [Python SDK](#tab/python)
397405

406+
Run the following command:
407+
398408
```python
399409
ml_client.models.get(name="<model-name>", version=<version>)
400410
```
401411

402412
### [Studio](#tab/studio)
403413

404-
To show details for a model in a workspace, select a model on the Azure Machine Learning studio **Models** page.
414+
Select a model on the Azure Machine Learning studio **Models** page.
405415

406416
---
407417

0 commit comments

Comments
 (0)