Skip to content

Commit feaed9b

Browse files
committed
Merge branch 'main' of https://github.com/microsoftdocs/azure-ai-docs-pr into components
2 parents 0bec417 + 553c628 commit feaed9b

File tree

5 files changed

+51
-52
lines changed

5 files changed

+51
-52
lines changed

articles/ai-services/document-intelligence/toc.yml

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -295,10 +295,8 @@ items:
295295
items:
296296
- name: REST APIs
297297
items:
298-
- name: 2024-02-29-preview (v4.0)
299-
href: /rest/api/aiservices/document-models/build-model?view=rest-aiservices-2024-02-29-preview&preserve-view=true&branch=docintelligence&tabs=HTTP
300-
- name: 2023-10-31-preview (v4.0)
301-
href: /rest/api/aiservices/operation-groups?view=rest-aiservices-2023-10-31-preview&preserve-view=true&tabs=HTTP
298+
- name: 2024-07-31-preview (v4.0)
299+
href: /rest/api/aiservices/operation-groups?view=rest-aiservices-v4.0%20(2024-07-31-preview)&preserve-view=true
302300
- name: 2023-07-31 (v3.1)
303301
href: /rest/api/aiservices/document-models/analyze-document?view=rest-aiservices-2023-07-31&preserve-view=true&tabs=HTTP
304302
- name: 2022-08-31 (v3.0)
@@ -307,7 +305,7 @@ items:
307305
href: v3-error-guide.md
308306
- name: v2.1
309307
href: /rest/api/aiservices/analyzer?view=rest-aiservices-v2.1&preserve-view=true
310-
- name: Client libraries (2023-10-31-preview)
308+
- name: Client libraries (2024-07-31-preview)
311309
items:
312310
- name: C# / .NET
313311
href: /dotnet/api/overview/azure/ai.documentintelligence-readme?view=azure-dotnet-preview&preserve-view=true

articles/ai-services/openai/index.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ landingContent:
5656
links:
5757
- text: Embeddings
5858
url: ./tutorials/embeddings.md
59-
- text: Fine-tuning GPT-3.5 Turbo
59+
- text: Fine-tuning GPT-4o mini
6060
url: ./tutorials/fine-tune.md
6161

6262
#Card 2

articles/ai-studio/how-to/deploy-models-serverless-connect.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -202,7 +202,7 @@ Follow these steps to create a connection:
202202
# [Python SDK](#tab/python)
203203
204204
```python
205-
client.connections.create(ServerlessConnection(
205+
client.connections.create_or_update(ServerlessConnection(
206206
name="meta-llama3-8b-connection",
207207
endpoint="https://meta-llama3-8b-qwerty-serverless.inference.ai.azure.com",
208208
api_key="1234567890qwertyuiop"

articles/ai-studio/tutorials/copilot-sdk-build-rag.md

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ ms.date: 08/29/2024
99
ms.reviewer: lebaro
1010
ms.author: sgilley
1111
author: sdgilley
12+
ms.custom: [copilot-learning-hub]
1213
#customer intent: As a developer, I want to learn how to use the prompt flow SDK so that I can build a RAG-based chat app.
1314
---
1415

@@ -29,7 +30,7 @@ This tutorial is part two of a three-part tutorial.
2930

3031
* Complete [Tutorial: Part 1 - Create resources for building a custom chat application with the prompt flow SDK](copilot-sdk-create-resources.md).
3132

32-
* You need a local copy of product data. The [Azure-Samples/rag-data-openai-python-promptflow repository on GitHub](https://github.com/Azure-Samples/rag-data-openai-python-promptflow/) contains sample retail product information that's relevant for this tutorial scenario. [Download the example Contoso Trek retail product data in a ZIP file](https://github.com/Azure-Samples/rag-data-openai-python-promptflow/tree/main/tutorial/data) to your local machine.
33+
* You need a local copy of product data. The [Azure-Samples/rag-data-openai-python-promptflow repository on GitHub](https://github.com/Azure-Samples/rag-data-openai-python-promptflow/) contains sample retail product information that's relevant for this tutorial scenario. [Download the example Contoso Trek retail product data in a ZIP file](https://github.com/Azure-Samples/rag-data-openai-python-promptflow/blob/main/tutorial/data/product-info.zip) to your local machine.
3334

3435
## Application code structure
3536

@@ -114,7 +115,7 @@ These steps deploy a model to a real-time endpoint from the AI Studio [model cat
114115
When you deploy the `gpt-3.5-turbo` model, find the following values in the **View Code** section, and add them to your **.env** file:
115116
116117
```env
117-
AZURE_OPENAI_ENDPOINT=<chat_model_endpoint_value>
118+
AZURE_OPENAI_ENDPOINT=<endpoint_value>
118119
AZURE_OPENAI_CHAT_DEPLOYMENT=<chat_model_deployment_name>
119120
AZURE_OPENAI_API_VERSION=<api_version>
120121
```
@@ -155,7 +156,7 @@ The goal with this RAG-based application is to ground the model responses in you
155156

156157
If you don't have an Azure AI Search index already created, we walk through how to create one. If you already have an index to use, you can skip to the [set the search environment variable](#set-search-index) section. The search index is created on the Azure AI Search service that was either created or referenced in the previous step.
157158

158-
1. Use your own data or [download the example Contoso Trek retail product data in a ZIP file](https://github.com/Azure-Samples/rag-data-openai-python-promptflow/tree/main/tutorial/data) to your local machine. Unzip the file into your **rag-tutorial** folder. This data is a collection of markdown files that represent product information. The data is structured in a way that is easy to ingest into a search index. You build a search index from this data.
159+
1. Use your own data or [download the example Contoso Trek retail product data in a ZIP file](https://github.com/Azure-Samples/rag-data-openai-python-promptflow/blob/main/tutorial/data/product-info.zip) to your local machine. Unzip the file into your **rag-tutorial/data** folder. This data is a collection of markdown files that represent product information. The data is structured in a way that is easy to ingest into a search index. You build a search index from this data.
159160

160161
1. The prompt flow RAG package allows you to ingest the markdown files, locally create a search index, and register it in the cloud project. Install the prompt flow RAG package:
161162

0 commit comments

Comments
 (0)