You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/ai-foundry/concepts/models-featured.md
+8-6Lines changed: 8 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -209,10 +209,12 @@ For more examples of how to use Meta Llama models, see the following examples:
209
209
210
210
## Microsoft
211
211
212
-
Phi is a family of lightweight, state-of-the-art open models. These models were trained with Phi-3 datasets. The datasets include both synthetic data and the filtered, publicly available websites data, with a focus on high quality and reasoning-dense properties. The models underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
212
+
Microsoft models include various model groups such as MAI models, Phi models, healthcare AI models, and more. To see all the available Microsoft models, view [the Microsoft model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=phi).
213
+
213
214
214
215
| Model | Type | Capabilities |
215
216
| ------ | ---- | ------------ |
217
+
|[MAI-DS-R1](https://ai.azure.com/explore/models/MAI-DS-R1/version/1/registry/azureml)|[chat-completion with reasoning content](../model-inference/how-to/use-chat-reasoning.md?context=/azure/ai-foundry/context/context)| - **Input:** text (163,840 tokens) <br /> - **Output:** text (163,840 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text. |
216
218
|[Phi-4-multimodal-instruct](https://ai.azure.com/explore/models/Phi-4-multimodal-instruct/version/1/registry/azureml)|[chat-completion (with image and audio content)](../model-inference/how-to/use-chat-multi-modal.md?context=/azure/ai-foundry/context/context)| - **Input:** text, images, and audio (131,072 tokens) <br /> - **Output:** text (4,096 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
217
219
|[Phi-4-mini-instruct](https://ai.azure.com/explore/models/Phi-4-mini-instruct/version/1/registry/azureml)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (131,072 tokens) <br /> - **Output:** text (4,096 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
218
220
|[Phi-4](https://ai.azure.com/explore/models/Phi-4/version/2/registry/azureml)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (16,384 tokens) <br /> - **Output:** text (16,384 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
@@ -226,12 +228,9 @@ Phi is a family of lightweight, state-of-the-art open models. These models were
226
228
|[Phi-3-medium-128k-instruct](https://ai.azure.com/explore/models/Phi-3-medium-128k-instruct/version/6/registry/azureml)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (131,072 tokens) <br /> - **Output:** text (4,096 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
227
229
|[Phi-3-medium-4k-instruct](https://ai.azure.com/explore/models/Phi-3-medium-4k-instruct/version/5/registry/azureml)|[chat-completion](../model-inference/how-to/use-chat-completions.md?context=/azure/ai-foundry/context/context)| - **Input:** text (4,096 tokens) <br /> - **Output:** text (4,096 tokens) <br /> - **Tool calling:** No <br /> - **Response formats:** Text |
228
230
231
+
#### Inference examples: Microsoft models
229
232
230
-
See [this model collection in Azure AI Foundry portal](https://ai.azure.com/explore/models?&selectedCollection=phi).
231
-
232
-
#### Inference examples: Microsoft Phi
233
-
234
-
For more examples of how to use Phi-3 family models, see the following examples:
233
+
For more examples of how to use Microsoft models, see the following examples:
Copy file name to clipboardExpand all lines: articles/ai-foundry/how-to/configure-private-link.md
+36-40Lines changed: 36 additions & 40 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -10,6 +10,7 @@ ms.date: 01/15/2025
10
10
ms.reviewer: meerakurup
11
11
ms.author: larryfr
12
12
author: Blackmist
13
+
zone_pivot_groups: azure-portal-and-cli
13
14
# Customer intent: As an admin, I want to configure a private link for hub so that I can secure my hubs.
14
15
---
15
16
@@ -25,7 +26,6 @@ You get several hub default resources in your resource group. You need to config
25
26
- Establish private endpoint connection to hub default resources. You need to have both a blob and file private endpoint for the default storage account.
26
27
- If your storage account is private, [assign roles](#private-storage-configuration) to allow access.
27
28
28
-
29
29
## Prerequisites
30
30
31
31
* You must have an existing Azure Virtual Network to create the private endpoint in.
@@ -37,9 +37,9 @@ You get several hub default resources in your resource group. You need to config
37
37
38
38
## Create a hub that uses a private endpoint
39
39
40
-
If you are creating a new hub, use the following tabs to select how you are creating the hub (Azure portal or Azure CLI.) Each of these methods __requires an existing virtual network__:
40
+
If you are creating a new hub, use the following methods to create the hub (Azure portal or Azure CLI). Each of these methods __requires an existing virtual network__:
41
41
42
-
# [Azure portal](#tab/azure-portal)
42
+
:::zone pivot="azure-portal"
43
43
44
44
> [!NOTE]
45
45
> The information in this document is only about configuring a private link. For a walkthrough of creating a secure hub in the portal, see [Create a secure hub in the Azure portal](create-secure-ai-hub.md).
@@ -55,7 +55,9 @@ If you are creating a new hub, use the following tabs to select how you are crea
55
55
56
56
1. Input required fields. When selecting the __Region__, select the same region as your virtual network.
57
57
58
-
# [Azure CLI](#tab/cli)
58
+
:::zone-end
59
+
60
+
:::zone pivot="cli"
59
61
60
62
> [!NOTE]
61
63
> The information in this section doesn't cover basic hub configuration. For more information, see [Create a hub using the Azure CLI](./develop/create-hub-project-sdk.md?tabs=azurecli).
@@ -95,34 +97,17 @@ az network private-endpoint dns-zone-group create \
Use one of the following methods to add a private endpoint to an existing hub:
124
109
125
-
# [Azure portal](#tab/azure-portal)
110
+
:::zone pivot="azure-portal"
126
111
127
112
1. From the [Azure portal](https://portal.azure.com), select your hub.
128
113
1. From the left side of the page, select __Settings__, __Networking__, and then select the __Private endpoint connections__ tab. Select __+ Private endpoint__.
@@ -131,13 +116,15 @@ Use one of the following methods to add a private endpoint to an existing hub:
131
116
132
117
1. When going through the forms to create a private endpoint, be sure to:
133
118
134
-
- From __Basics__, select the same the __Region__ as your virtual network.
119
+
- From __Basics__, select the same __Region__ as your virtual network.
135
120
- From __Resource__, select `amlworkspace` as the __target sub-resource__.
136
121
- From the __Virtual Network__ form, select the virtual network and subnet that you want to connect to.
137
122
138
123
1. After populating the forms with any additional network configurations you require, use the __Review + create__ tab to review your settings and select __Create__ to create the private endpoint.
139
124
140
-
# [Azure CLI](#tab/cli)
125
+
:::zone-end
126
+
127
+
:::zone pivot="cli"
141
128
142
129
Use the [Azure networking CLI commands](/cli/azure/network/private-endpoint#az-network-private-endpoint-create) to create a private link endpoint for the hub.
143
130
@@ -159,11 +146,11 @@ To create the private DNS zone entries for the workspace, use the following comm
159
146
# Add privatelink.api.azureml.ms
160
147
az network private-dns zone create \
161
148
-g <resource-group-name> \
162
-
--name 'privatelink.api.azureml.ms'
149
+
--name privatelink.api.azureml.ms
163
150
164
151
az network private-dns link vnet create \
165
152
-g <resource-group-name> \
166
-
--zone-name 'privatelink.api.azureml.ms' \
153
+
--zone-name privatelink.api.azureml.ms \
167
154
--name <link-name> \
168
155
--virtual-network <vnet-name> \
169
156
--registration-enabled false
@@ -172,17 +159,17 @@ az network private-endpoint dns-zone-group create \
172
159
-g <resource-group-name> \
173
160
--endpoint-name <private-endpoint-name> \
174
161
--name myzonegroup \
175
-
--private-dns-zone 'privatelink.api.azureml.ms' \
176
-
--zone-name 'privatelink.api.azureml.ms'
162
+
--private-dns-zone privatelink.api.azureml.ms \
163
+
--zone-name privatelink.api.azureml.ms
177
164
178
165
# Add privatelink.notebooks.azure.net
179
166
az network private-dns zone create \
180
167
-g <resource-group-name> \
181
-
--name 'privatelink.notebooks.azure.net'
168
+
--name privatelink.notebooks.azure.net
182
169
183
170
az network private-dns link vnet create \
184
171
-g <resource-group-name> \
185
-
--zone-name 'privatelink.notebooks.azure.net' \
172
+
--zone-name privatelink.notebooks.azure.net \
186
173
--name <link-name> \
187
174
--virtual-network <vnet-name> \
188
175
--registration-enabled false
@@ -191,10 +178,12 @@ az network private-endpoint dns-zone-group add \
@@ -206,24 +195,28 @@ You can remove one or all private endpoints for a hub. Removing a private endpoi
206
195
207
196
To remove a private endpoint, use the following information:
208
197
209
-
# [Azure portal](#tab/azure-portal)
198
+
:::zone pivot="azure-portal"
210
199
211
200
1. From the [Azure portal](https://portal.azure.com), select your hub.
212
201
1. From the left side of the page, select __Settings__, __Networking__, and then select the __Private endpoint connections__ tab.
213
202
1. Select the endpoint to remove and then select __Remove__.
214
203
215
204
:::image type="content" source="../media/how-to/network/remove-private-endpoint.png" alt-text="Screenshot of a selected private endpoint with the remove option highlighted.":::
216
205
217
-
# [Azure CLI](#tab/cli)
206
+
:::zone-end
207
+
208
+
:::zone pivot="cli"
218
209
219
210
When using the Azure CLI, use the following command to remove the private endpoint:
220
211
221
212
```azurecli
222
213
az network private-endpoint delete \
223
214
--name <private-endpoint-name> \
224
-
--resource-group <resource-group-name> \
215
+
--resource-group <resource-group-name>
225
216
```
226
217
218
+
:::zone-end
219
+
227
220
---
228
221
229
222
## Enable public access
@@ -235,13 +228,15 @@ In some situations, you might want to allow someone to connect to your secured h
235
228
236
229
To enable public access, use the following steps:
237
230
238
-
# [Azure portal](#tab/azure-portal)
231
+
:::zone pivot="azure-portal"
239
232
240
233
1. From the [Azure portal](https://portal.azure.com), select your hub.
241
234
1. From the left side of the page, select __Networking__ and then select the __Public access__ tab.
242
235
1. Select __Enabled from all networks__, and then select __Save__.
243
236
244
-
# [Azure CLI](#tab/cli)
237
+
:::zone-end
238
+
239
+
:::zone pivot="cli"
245
240
246
241
Use the following Azure CLI command to enable public access:
247
242
@@ -255,8 +250,9 @@ If you receive an error that the `ml` command isn't found, use the following com
Copy file name to clipboardExpand all lines: articles/ai-foundry/how-to/costs-plan-manage.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -111,7 +111,7 @@ Here's an example of how to monitor costs for a project. The costs are used as a
111
111
1. Under the **Project** heading, select **Overview**.
112
112
1. Select **View cost for resources** from the **Total cost** section. The [Azure portal](https://portal.azure.com) opens to the resource group for your project.
113
113
114
-
:::image type="content" source="../media/cost-management/project-costs/project-settings-go-view-costs.png" alt-text="Screenshot of the Azure AI Foundry portal portal showing how to see project settings." lightbox="../media/cost-management/project-costs/project-settings-go-view-costs.png":::
114
+
:::image type="content" source="../media/cost-management/project-costs/project-settings-go-view-costs.png" alt-text="Screenshot of the Azure AI Foundry portal showing how to see project settings." lightbox="../media/cost-management/project-costs/project-settings-go-view-costs.png":::
115
115
116
116
1. Expand the **Resource** column to see the costs for each service that's underlying your [project](../concepts/ai-resources.md#organize-work-in-projects-for-customization). But this view doesn't include costs for all resources that you use in a project.
Copy file name to clipboardExpand all lines: articles/ai-foundry/how-to/develop/run-scans-ai-red-teaming-agent.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -224,7 +224,7 @@ More advanced users can specify the desired attack strategies instead of using d
224
224
225
225
Each new attack strategy specified will be applied to the set of baseline adversarial queries used in addition to the baseline adversarial queries.
226
226
227
-
This following example would generate one attack objective per each of the four risk categories specified. This will first, generate four baseline adversarial prompts which would be sent to your target. Then, each baseline query would get converted into each of the four attack strategies. This will result in a total of 20 attack-response pairs from your AI system. The last attack stratgy is an example of a composition of two attack strategies to create a more complex attack query: the `AttackStrategy.Compose()` function takes in a list of two supported attack strategies and chains them together. The example's composition would first encode the baseline adversarial query into Base64 then apply the ROT13 cipher on the Base64-encoded query. Compositions only support chaining two attack strategies together.
227
+
This following example would generate one attack objective per each of the four risk categories specified. This will first, generate four baseline adversarial prompts which would be sent to your target. Then, each baseline query would get converted into each of the four attack strategies. This will result in a total of 20 attack-response pairs from your AI system. The last attack strategy is an example of a composition of two attack strategies to create a more complex attack query: the `AttackStrategy.Compose()` function takes in a list of two supported attack strategies and chains them together. The example's composition would first encode the baseline adversarial query into Base64 then apply the ROT13 cipher on the Base64-encoded query. Compositions only support chaining two attack strategies together.
0 commit comments