Skip to content

Commit 039a7a6

Browse files
committed
Resolve issues that the reviewer flagged . . .
1 parent 33ebeee commit 039a7a6

File tree

3 files changed

+11
-11
lines changed

3 files changed

+11
-11
lines changed

articles/machine-learning/how-to-access-data-interactive.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,8 @@ ms.service: machine-learning
77
ms.subservice: core
88
ms.topic: how-to
99
author: samuel100
10-
ms.author: samkemp
11-
ms.date: 10/28/2022
10+
ms.author: franksolomon
11+
ms.date: 11/17/2022
1212
ms.custom: sdkv2
1313
#Customer intent: As a professional data scientist, I want to know how to build and deploy a model with Azure Machine Learning by using Python in a Jupyter Notebook.
1414
---
@@ -40,7 +40,7 @@ Typically the beginning of a machine learning project involves exploratory data
4040
> pip install -U azureml-fsspec mltable
4141
> ```
4242
43-
## Access data from a Datastore URI like a filesystem (preview)
43+
## Access data from a datastore URI, like a filesystem (preview)
4444
4545
[!INCLUDE [preview disclaimer](../../includes/machine-learning-preview-generic-disclaimer.md)]
4646
@@ -85,7 +85,7 @@ df.head()
8585
> 1. Select **Data** from the left-hand menu followed by the **Datastores** tab.
8686
> 1. Select your datastore name and then **Browse**.
8787
> 1. Find the file/folder you want to read into pandas, select the elipsis (**...**) next to it. Select from the menu **Copy URI**. You can select the **Datastore URI** to copy into your notebook/script.
88-
> :::image type="content" source="media/how-to-access-data-ci/datastore_uri_copy.png" alt-text="copy datastore URI":::
88+
> :::image type="content" source="media/how-to-access-data-ci/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
8989
9090
You can also instantiate an Azure ML filesystem and do filesystem-like commands like `ls`, `glob`, `exists`, `open`, etc. The `open()` method will return a file-like object, which can be passed to any other library that expects to work with python files, or used by your own code as you would a normal python file object. These file-like objects respect the use of `with` contexts, for example:
9191

@@ -109,7 +109,7 @@ with fs.open('/datastore_name/folder/file1.csv') as f:
109109

110110
### Examples
111111

112-
In this section we provide some examples of how to using Filesystem spec, for some common scenarios.
112+
In this section we provide some examples of how to use Filesystem spec, for some common scenarios.
113113

114114
#### Read a single CSV file into pandas
115115

@@ -160,7 +160,7 @@ df.head()
160160
#### Read a folder of parquet files into pandas
161161
Parquet files are typically written to a folder as part of an ETL process, which can emit files pertaining to the ETL such as progress, commits, etc. Below is an example of files created from an ETL process (files beginning with `_`) to produce a parquet file of data.
162162

163-
:::image type="content" source="media/how-to-access-data-ci/parquet-auxillary.png" alt-text="parquet etl process":::
163+
:::image type="content" source="media/how-to-access-data-ci/parquet-auxillary.png" alt-text="Screenshot showing the parquet etl process.":::
164164

165165
In these scenarios, you'll only want to read the parquet files in the folder and ignore the ETL process files. The code below shows how you can use glob patterns to read only parquet files in a folder:
166166

@@ -185,7 +185,7 @@ df = pd.concat(dflist)
185185
df.head()
186186
```
187187

188-
#### Accessing data from your Azure Databricks Filesystem (`dbfs`)
188+
#### Accessing data from your Azure Databricks filesystem (`dbfs`)
189189

190190
Filesystem spec (`fsspec`) has a range of [known implementations](https://filesystem-spec.readthedocs.io/en/stable/_modules/index.html), one of which is the Databricks Filesystem (`dbfs`).
191191

@@ -456,7 +456,7 @@ df.head()
456456
> 1. Select **Data** from the left-hand menu followed by the **Datastores** tab.
457457
> 1. Select your datastore name and then **Browse**.
458458
> 1. Find the file/folder you want to read into pandas, select the elipsis (**...**) next to it. Select from the menu **Copy URI**. You can select the **Datastore URI** to copy into your notebook/script.
459-
> :::image type="content" source="media/how-to-access-data-ci/datastore_uri_copy.png" alt-text="copy datastore URI":::
459+
> :::image type="content" source="media/how-to-access-data-ci/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
460460
461461
##### [HTTP Server](#tab/http)
462462
```python
@@ -529,7 +529,7 @@ df.head()
529529
> 1. Select **Data** from the left-hand menu followed by the **Datastores** tab.
530530
> 1. Select your datastore name and then **Browse**.
531531
> 1. Find the file/folder you want to read into pandas, select the elipsis (**...**) next to it. Select from the menu **Copy URI**. You can select the **Datastore URI** to copy into your notebook/script.
532-
> :::image type="content" source="media/how-to-access-data-ci/datastore_uri_copy.png" alt-text="copy datastore URI":::
532+
> :::image type="content" source="media/how-to-access-data-ci/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
533533
534534
##### [HTTP Server](#tab/http)
535535

@@ -552,7 +552,7 @@ df.head()
552552

553553
---
554554

555-
### Reading Data assets
555+
### Reading data assets
556556
In this section, you'll learn how to access your Azure ML data assets into pandas.
557557

558558
#### Table asset

articles/machine-learning/how-to-create-data-assets.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -281,7 +281,7 @@ For more transformations available in `mltable`, please look into [reference-yam
281281
282282
### Create an MLTable artifact via Python SDK: from_*
283283
If you would like to create an MLTable object in memory via Python SDK, you could use from_* methods.
284-
The from_* methods does not materialize the data, but rather stores is as a transformation in the MLTable definition.
284+
The from_* methods do not materialize the data, but rather stores it as a transformation in the MLTable definition.
285285
286286
For example you can use from_delta_lake() to create an in-memory MLTable artifact to read delta lake data from the path `delta_table_path`.
287287
```python
3.22 KB
Loading

0 commit comments

Comments
 (0)