You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Add `python.exe` to the PATH environment variable
24
-
4. Install [Microsoft Visual C++ 14.0 and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/). You can find the download under "Tools For Visual Studio 2019".
25
-
5. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567).
26
-
6. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
27
-
7. Open Azure Data Studio and configure Python for notebooks. For details, see [Configure Python for Notebooks](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
28
-
8. Install the latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020).
23
+
downloads/). You can find the download under "Tools For Visual Studio 2019".
24
+
3. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567).
25
+
4. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
26
+
5. Open Azure Data Studio and configure Python for notebooks. For details, see [Configure Python for Notebooks](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
27
+
6. Install the latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020). The following scripts require that AZ PowerShell be the latest version (3.5.0, Feb 2020).
29
28
30
29
## Deploy Azure resources using PowerShell Script
31
30
@@ -272,4 +271,4 @@ Deploy the Azure resources required by this Azure SQL Edge tutorial. These can b
272
271
273
272
## Next Steps
274
273
275
-
- [Set up IoT Edge modules and connections](set-up-iot-edge-modules.md)
274
+
* [Set up IoT Edge modules and connections](tutorial-set-up-iot-edge-modules.md)
Copy file name to clipboardExpand all lines: articles/azure-sql-edge/tutorial-run-ml-model-on-sql-edge.md
+3-4Lines changed: 3 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -155,7 +155,7 @@ Enter the following Python code in the Azure Data Studio notebook and run it.
155
155
```python
156
156
## Load the Model into a SQL Database.
157
157
## Define the Connection string parameters. These connection strings will be used later also in the demo.
158
-
server ='40.69.153.211,1600'#SQL Server IP address
158
+
server ='<SQL Server IP address>'
159
159
username ='sa'# SQL Server username
160
160
password ='<SQL Server password>'
161
161
database ='IronOreSilicaPrediction'
@@ -177,7 +177,7 @@ Enter the following Python code in the Azure Data Studio notebook and run it.
177
177
178
178
```python
179
179
## Define the Connection string parameters. These connection strings will be used later also in the demo.
180
-
server ='40.69.153.211,1600'#SQL Server IP address
180
+
server ='<SQL Server IP address>'
181
181
username ='sa'# SQL Server username
182
182
password ='<SQL Server password>'
183
183
database ='IronOreSilicaPrediction'
@@ -220,5 +220,4 @@ Enter the following Python code in the Azure Data Studio notebook and run it.
220
220
221
221
## Next steps
222
222
223
-
For more information on using ONNX models in Azure SQL Edge, see
224
-
[Machine learning and AI with ONNX in Azure SQL Edge (Preview)](https://review.docs.microsoft.com/en-us/azure/azure-sql-edge/onnx-overview?branch=release-preview-sqldb-edge)
223
+
For more information on using ONNX models in Azure SQL Edge, see [Machine learning and AI with ONNX in SQL Edge (Preview)](onnx-overview.md).
Copy file name to clipboardExpand all lines: articles/azure-sql-edge/tutorial-set-up-iot-edge-modules.md
+8-14Lines changed: 8 additions & 14 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -16,7 +16,7 @@ ms.date: 05/19/2020
16
16
In part two of this three-part tutorial for predicting iron ore impurities in Azure SQL Edge, you'll set up the following IoT Edge modules:
17
17
18
18
- Azure SQL Edge
19
-
-A data generator module
19
+
-Data generator IoT Edge module
20
20
21
21
## Create Azure Stream Analytics module
22
22
@@ -32,14 +32,17 @@ Once the Azure Stream Analytics job is created with the hosting environment set
32
32
Encoding|UTF-8
33
33
Event compression type|None
34
34
35
-
2. To create the **output**, click **+Add** and choose SQL Database. Fill the details section using the following information:
35
+
2. To create the **output**, click **+Add** and choose SQL Database. Fill the details section using the following information.
36
+
37
+
> [!NOTE]
38
+
> The password specified in this section needs to be specified for SQL SA password when deploying the SQL Edge module in section **"Deploy the Azure SQL Edge module"**.
36
39
37
40
Field|Value
38
41
-----|-----
39
42
Database|IronOreSilicaPrediction
40
43
Server name|tcp:.,1433
41
44
Username|sa
42
-
Password|YourStrongPasswrod
45
+
Password|Specify a strong password
43
46
Table|IronOreMeasurements1
44
47
45
48
3. Navigate to the **Query** section and set up the query as follows:
@@ -91,7 +94,7 @@ Now, specify the container credentials in the IoT Edge module.
91
94
92
95
3. CLick **Add**.
93
96
94
-
## Deploythe Azure SQL Edge module
97
+
## Deploy the Azure SQL Edge module
95
98
96
99
1. Deploy the Azure SQL Edge module by following the steps listed in [Deploy Azure SQL Database Edge Preview](https://docs.microsoft.com/azure/sql-database-edge/deploy-portal#deploy-sql-database-edge).
97
100
@@ -120,15 +123,6 @@ Now, specify the container credentials in the IoT Edge module.
0 commit comments