Skip to content

Commit 06fd8b1

Browse files
committed
Merging Vasiya's changes
1 parent 2a099b6 commit 06fd8b1

File tree

3 files changed

+18
-26
lines changed

3 files changed

+18
-26
lines changed

articles/azure-sql-edge/deploy-azure-resources.md renamed to articles/azure-sql-edge/tutorial-deploy-azure-resources.md

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -17,15 +17,14 @@ In this three-part tutorial, you'll create a machine learning model to predict i
1717
## Prerequisites
1818

1919
1. If you don't have an Azure subscription, create a [free account](https://azure.microsoft.com/free/).
20-
2. Install [Visual Studio Professional/Enterprise](https://visualstudio.microsoft.com/vs/).
21-
3. Install [Python 3.6.8](https://www.python.org/downloads/release/python-368/).
20+
2. Install [Python 3.6.8](https://www.python.org/downloads/release/python-368/).
2221
* Use the Windows x86-x64 executable installer
2322
* Add `python.exe` to the PATH environment variable
24-
4. Install [Microsoft Visual C++ 14.0 and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/). You can find the download under "Tools For Visual Studio 2019".
25-
5. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567).
26-
6. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
27-
7. Open Azure Data Studio and configure Python for notebooks. For details, see [Configure Python for Notebooks](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
28-
8. Install the latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020).
23+
downloads/). You can find the download under "Tools For Visual Studio 2019".
24+
3. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567).
25+
4. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
26+
5. Open Azure Data Studio and configure Python for notebooks. For details, see [Configure Python for Notebooks](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
27+
6. Install the latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020). The following scripts require that AZ PowerShell be the latest version (3.5.0, Feb 2020).
2928

3029
## Deploy Azure resources using PowerShell Script
3130

@@ -272,4 +271,4 @@ Deploy the Azure resources required by this Azure SQL Edge tutorial. These can b
272271
273272
## Next Steps
274273
275-
- [Set up IoT Edge modules and connections](set-up-iot-edge-modules.md)
274+
* [Set up IoT Edge modules and connections](tutorial-set-up-iot-edge-modules.md)

articles/azure-sql-edge/run-ml-model-on-sql-edge.md renamed to articles/azure-sql-edge/tutorial-run-ml-model-on-sql-edge.md

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ Enter the following Python code in the Azure Data Studio notebook and run it.
155155
```python
156156
## Load the Model into a SQL Database.
157157
## Define the Connection string parameters. These connection strings will be used later also in the demo.
158-
server = '40.69.153.211,1600' # SQL Server IP address
158+
server = '<SQL Server IP address>'
159159
username = 'sa' # SQL Server username
160160
password = '<SQL Server password>'
161161
database = 'IronOreSilicaPrediction'
@@ -177,7 +177,7 @@ Enter the following Python code in the Azure Data Studio notebook and run it.
177177

178178
```python
179179
## Define the Connection string parameters. These connection strings will be used later also in the demo.
180-
server = '40.69.153.211,1600' # SQL Server IP address
180+
server = '<SQL Server IP address>'
181181
username = 'sa' # SQL Server username
182182
password = '<SQL Server password>'
183183
database = 'IronOreSilicaPrediction'
@@ -220,5 +220,4 @@ Enter the following Python code in the Azure Data Studio notebook and run it.
220220

221221
## Next steps
222222

223-
For more information on using ONNX models in Azure SQL Edge, see
224-
[Machine learning and AI with ONNX in Azure SQL Edge (Preview)](https://review.docs.microsoft.com/en-us/azure/azure-sql-edge/onnx-overview?branch=release-preview-sqldb-edge)
223+
For more information on using ONNX models in Azure SQL Edge, see [Machine learning and AI with ONNX in SQL Edge (Preview)](onnx-overview.md).

articles/azure-sql-edge/set-up-iot-edge-modules.md renamed to articles/azure-sql-edge/tutorial-set-up-iot-edge-modules.md

Lines changed: 8 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ ms.date: 05/19/2020
1616
In part two of this three-part tutorial for predicting iron ore impurities in Azure SQL Edge, you'll set up the following IoT Edge modules:
1717

1818
- Azure SQL Edge
19-
- A data generator module
19+
- Data generator IoT Edge module
2020

2121
## Create Azure Stream Analytics module
2222

@@ -32,14 +32,17 @@ Once the Azure Stream Analytics job is created with the hosting environment set
3232
Encoding|UTF-8
3333
Event compression type|None
3434

35-
2. To create the **output**, click **+Add** and choose SQL Database. Fill the details section using the following information:
35+
2. To create the **output**, click **+Add** and choose SQL Database. Fill the details section using the following information.
36+
37+
> [!NOTE]
38+
> The password specified in this section needs to be specified for SQL SA password when deploying the SQL Edge module in section **"Deploy the Azure SQL Edge module"**.
3639
3740
Field|Value
3841
-----|-----
3942
Database|IronOreSilicaPrediction
4043
Server name|tcp:.,1433
4144
Username|sa
42-
Password|YourStrongPasswrod
45+
Password|Specify a strong password
4346
Table|IronOreMeasurements1
4447

4548
3. Navigate to the **Query** section and set up the query as follows:
@@ -91,7 +94,7 @@ Now, specify the container credentials in the IoT Edge module.
9194

9295
3. CLick **Add**.
9396

94-
## Deploythe Azure SQL Edge module
97+
## Deploy the Azure SQL Edge module
9598

9699
1. Deploy the Azure SQL Edge module by following the steps listed in [Deploy Azure SQL Database Edge Preview](https://docs.microsoft.com/azure/sql-database-edge/deploy-portal#deploy-sql-database-edge).
97100

@@ -120,15 +123,6 @@ Now, specify the container credentials in the IoT Edge module.
120123
}
121124
```
122125

123-
For example:
124-
125-
```json
126-
{
127-
"SqlPackage": "https://ASEstorage.blob.core.windows.net/sqldatabasedacpac/SQLDatabasedacpac.zip?sp=r&st=2020-04- 01T20:01:49Z&se=2021-01-01T05:01:49Z&spr=https&sv=2019-02-02&sr=b&sig=AH71glRTfULcyzJZKlgezfa0Epjfe7zv10mF%2BNzEIn0%3D",
128-
"ASAJobInfo": "https://ASEstorage.blob.core.windows.net/bootdiagnostics-ironorepr-6984a2b8-6901-41a8-b3a6-49f86276e63d/ASAEdgeJobs/1278e9b9-94af-41ec-90b3-8172560340c1/e9bb25a6-d0a1-422b-9e29-4305a89e92f2/ASAEdgeJobDefinition.zip?sv=2018-03-28&sr=b&sig=KQZqR7diisByoUkCK6pEA3VJm%2FI2wHWEPDL1OwjMTJ8%3D&st=2020-04-01T20%3A21%3A20Z&se=2023-04-01T20%3A31%3A20Z&sp=r"
129-
}
130-
```
131-
132126
## Next Steps
133127

134-
- [Deploy ML model on Azure SQL Edge using ONNX](run-ml-model-on-sql-edge.md)
128+
- [Deploy ML model on Azure SQL Edge using ONNX](tutorial-run-ml-model-on-sql-edge.md)

0 commit comments

Comments
 (0)