You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|`$schema`| string | The location/url to load the YAML schema.<br>If the user uses the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of the file enables the user to invoke schema and resource completions. |||
32
-
|`compute`| string |**Required.** <br>The name of the AML compute infrastructure to execute the job on. <br> The compute can be either a reference to an existing compute machine in the workspace <br>*Note:* jobs in pipeline don't support 'local' as `compute`. The 'local' here means that compute instance created in user's Azure Machine Learning Studio workspace. | 1. pattern `[^azureml:<compute_name>]` to use existing compute,<br>2.`'local'` to use local execution |`'local'`|
32
+
|`compute`| string |**Required.** <br>The name of the AML compute infrastructure to execute the job on. <br> The compute can be either a reference to an existing compute machine in the workspace <br>*Note:* jobs in pipeline don't support 'local' as `compute`. The 'local' here means that compute instance created in user's Azure Machine Learning studio workspace. | 1. pattern `[^azureml:<compute_name>]` to use existing compute,<br>2.`'local'` to use local execution |`'local'`|
33
33
|`limits`| object | Represents a dictionary object consisting of limit configurations of the Automated ML tabular job.<br>The key is name for the limit within the context of the job and the value is limit value. See [limits](#limits) to find out the properties of this object.|||
34
34
|`name`| string | The name of the submitted Automated ML job.<br>It must be unique across all jobs in the workspace. If not specified, Azure Machine Learning autogenerates a GUID for the name. |||
35
35
|`description`| string | The description of the Automated ML job. |||
@@ -115,7 +115,7 @@ The source JSON schema can be found at https://azuremlschemas.azureedge.net/late
115
115
116
116
| Key | Type | Description | Allowed values | Default value |
|`mode`| string | The featurization mode to be used by Automated ML job.<br>Setting it to: <ul><li>`'auto'` indicates whether featurization step should be done automatically</li><li>`'off'` indicates no featurization<li>`'custom'` indicates whether customized featurization should be used.</li></ul> Note: If the input data is sparse, featurization cannot be turned on. |`'auto'`, `'off'`, `'custom'`|`None`|
118
+
|`mode`| string | The featurization mode to be used by Automated ML job.<br>Setting it to: <br> `'auto'` indicates whether featurization step should be done automatically<br>`'off'` indicates no featurization<`'custom'` indicates whether customized featurization should be used. <br> Note: If the input data is sparse, featurization cannot be turned on. |`'auto'`, `'off'`, `'custom'`|`None`|
119
119
|`blocked_transformers`| list(string) | A list of transformer names to be blocked during featurization step by Automated ML, if featurization `mode` is set to 'custom'. |`'text_target_encoder'`, `'one_hot_encoder'`, `'cat_target_encoder'`, `'tf_idf'`, `'wo_e_target_encoder'`, `'label_encoder'`, `'word_embedding'`, `'naive_bayes'`, `'count_vectorizer'`, `'hash_one_hot_encoder'`|`None`|
120
120
|`column_name_and_types`| object | A dictionary object consisting of column names as dict key and feature types used to update column purpose as associated value, if featurization `mode` is set to 'custom'.|||
121
121
|`transformer_params`| object | A nested dictionary object consisting of transformer name as key and corresponding customization parameters on dataset columns for featurization, if featurization `mode` is set to 'custom'.<br>The forecasting only supports `imputer` transformer for customization.<br> Check out [column_transformers](#column_transformers) to find out how to create customization parameters. ||`None`|
@@ -146,7 +146,7 @@ az ml job create --file [YOUR_CLI_YAML_FILE] --workspace-name [YOUR_AZURE_WORKSP
146
146
```
147
147
148
148
### Quick links for further reference:
149
-
1.[Install and use the CLI (v2)](how-to-configure-cli.md)
150
-
2.[How to run an Automated ML job via CLI]()
151
-
2.[How to auto train forecasts](./how-to-auto-train-forecast.md)
152
-
3. CLI Forecasting examples:<br><ul><li>[Orange Juice Sale Forecasting](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-orange-juice-sales)</li><li>[Energy Demand Forecasting](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-task-energy-demand)</li><li>[Bike Share Demand Forecasting](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-bike-share)</li><li>[GitHub Daily Active Users Forecast](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-task-github-dau)
149
+
*[Install and use the CLI (v2)](how-to-configure-cli.md)
150
+
*[How to run an Automated ML job via CLI]()
151
+
*[How to auto train forecasts](./how-to-auto-train-forecast.md)
152
+
* CLI Forecasting examples:<br>[Orange Juice Sale Forecasting](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-orange-juice-sales) <br> [Energy Demand Forecasting](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-task-energy-demand) <br> [Bike Share Demand Forecasting](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-bike-share) <br> [GitHub Daily Active Users Forecast](https://github.com/Azure/azureml-examples/tree/main/cli/jobs/automl-standalone-jobs/cli-automl-forecasting-task-github-dau)
0 commit comments