Skip to content

Commit 0899051

Browse files
Merge pull request #210382 from Blackmist/endpoint-studio-model-upload
adding basic info on registering the model.
2 parents 8b0403d + 998889a commit 0899051

File tree

1 file changed

+27
-6
lines changed

1 file changed

+27
-6
lines changed

articles/machine-learning/how-to-use-managed-online-endpoint-studio.md

Lines changed: 27 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,8 @@ ms.topic: how-to
99
ms.custom: how-to, managed online endpoints, devplatv2, studio, event-tier1-build-2022
1010
ms.author: sehan
1111
author: dem108
12-
ms.reviewer: laobri
13-
ms.date: 10/21/2021
12+
ms.reviewer: larryfr
13+
ms.date: 09/07/2022
1414
---
1515

1616
# Create and use managed online endpoints in the studio
@@ -42,10 +42,23 @@ Use the studio to create a managed online endpoint directly in your browser. Whe
4242

4343
:::image type="content" source="media/how-to-create-managed-online-endpoint-studio/online-endpoint-wizard.png" lightbox="media/how-to-create-managed-online-endpoint-studio/online-endpoint-wizard.png" alt-text="A screenshot of a managed online endpoint create wizard.":::
4444

45-
### Follow the setup wizard to configure your managed online endpoint.
45+
### Register the model
46+
47+
A model registration is a logical entity in the workspace that may contain a single model file, or a directory containing multiple files. The steps in this article assume that you have registered the [model folder](https://github.com/Azure/azureml-examples/tree/main/cli/endpoints/online/model-1/model) that contains the model.
48+
49+
To register the example model using Azure Machine Learning studio, use the following steps:
50+
51+
1. Go to the [Azure Machine Learning studio](https://ml.azure.com).
52+
1. In the left navigation bar, select the **Models** page.
53+
1. Select **Register**, and then **From local files**.
54+
1. Select __Unspecified type__ for the __Model type__, then select __Browse__, and __Browse folder__.
55+
1. Select the `\azureml-examples\cli\endpoints\online\model-1\model` folder from the local copy of the repo you downloaded earlier. When prompted, select __Upload__. Once the upload completes, select __Next__.
56+
1. Enter a friendly __Name__ for the model. The steps in this article assume it is named `model-1`.
57+
1. Select __Next__, and then __Register__ to complete registration.
4658

47-
1. You can use our sample [model](https://github.com/Azure/azureml-examples/tree/main/cli/endpoints/online/model-1/model) and [scoring script](https://github.com/Azure/azureml-examples/blob/main/cli/endpoints/online/model-1/onlinescoring/score.py) from [https://github.com/Azure/azureml-examples/tree/main/cli/endpoints/online/model-1](https://github.com/Azure/azureml-examples/tree/main/cli/endpoints/online/model-1)
48-
1. On the **Environment** step of the wizard, you can select the **AzureML-sklearn-0.24.1-ubuntu18.04-py37-cpu-inference** curated environment.
59+
For more information on working with registered models, see [Register and work with models](how-to-manage-models.md).
60+
61+
### Follow the setup wizard to configure your managed online endpoint.
4962

5063
You can also create a managed online endpoint from the **Models** page in the studio. This is an easy way to add a model to an existing managed online deployment.
5164

@@ -54,7 +67,15 @@ You can also create a managed online endpoint from the **Models** page in the st
5467
1. Select a model by checking the circle next to the model name.
5568
1. Select **Deploy** > **Deploy to real-time endpoint**.
5669

57-
:::image type="content" source="media/how-to-create-managed-online-endpoint-studio/deploy-from-models-page.png" lightbox="media/how-to-create-managed-online-endpoint-studio/deploy-from-models-page.png" alt-text="A screenshot of creating a managed online endpoint from the Models UI.":::
70+
:::image type="content" source="media/how-to-create-managed-online-endpoint-studio/deploy-from-models-page.png" lightbox="media/how-to-create-managed-online-endpoint-studio/deploy-from-models-page.png" alt-text="A screenshot of creating a managed online endpoint from the Models UI.":::
71+
72+
1. Enter an __Endpoint name__ and select __Managed__ as the compute type.
73+
1. Select __Next__, accepting defaults, until you are prompted for the environment. Here, select the following:
74+
75+
* __Select scoring file and dependencies__: Browse and select the `\azureml-examples\cli\endpoints\online\model-1\onlinescoring\score.py` file from the repo you downloaded earlier.
76+
* __Choose an environment__ section: Select the **Scikit-learn 0.24.1** curated environment.
77+
78+
1. Select __Next__, accepting defaults, until you are prompted to create the deployment. Select the __Create__ button.
5879

5980
## View managed online endpoints
6081

0 commit comments

Comments
 (0)