@@ -607,7 +607,7 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
607
607
```pythonS
608
608
environment = Environment(
609
609
conda_file="sklearn-diabetes/environment/conda.yml",
610
- image="mcr.microsoft.com/azureml/openmpi3 .1.2-ubuntu18 .04:latest",
610
+ image="mcr.microsoft.com/azureml/openmpi4 .1.0-ubuntu22 .04:latest",
611
611
)
612
612
```
613
613
@@ -623,7 +623,7 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
623
623
1. Select the tab __Custom environments__ > __Create__.
624
624
1. Enter the name of the environment, in this case `sklearn-mlflow-online-py37`.
625
625
1. On __Select environment type__ select __Use existing docker image with conda__.
626
- 1. On __Container registry image path__, enter `mcr.microsoft.com/azureml/openmpi3 .1.2-ubuntu18 .04`.
626
+ 1. On __Container registry image path__, enter `mcr.microsoft.com/azureml/openmpi4 .1.0-ubuntu22 .04`.
627
627
1. On __Customize__ section copy the content of the file `sklearn-diabetes/environment/conda.yml` we introduced before.
628
628
1. Click on __Next__ and then on __Create__.
629
629
1. The environment is ready to be used.
@@ -642,7 +642,7 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
642
642
endpoint_name: my-endpoint
643
643
model: azureml:sklearn-diabetes@latest
644
644
environment:
645
- image: mcr.microsoft.com/azureml/openmpi3 .1.2-ubuntu18 .04
645
+ image: mcr.microsoft.com/azureml/openmpi4 .1.0-ubuntu22 .04
646
646
conda_file: sklearn-diabetes/environment/conda.yml
647
647
code_configuration:
648
648
code: sklearn-diabetes/src
0 commit comments