You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/operator-5g-core/concept-observability-analytics.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -19,7 +19,7 @@ Observability has three pillars: metrics, tracing, and logs. Azure Operator 5G C
19
19
The following components provide observability for Azure Operator 5G Core:
20
20
21
21
22
-
[:::image type="content" source="media/concept-observability-analytics/observability-overview.png" alt-text="Diagram of text boxes showing the components that support observability functions for Azure Operator 5G Core.":::](media/concept-observability-analytics/observability-overview-expanded.png#lightbox)
22
+
[:::image type="content" source="media/concept-observability-analytics/observability-overview.png" alt-text="Diagram of text boxes showing the components that support observability functions for Azure Operator 5G Core.":::](media/concept-observability-analytics/observability-overview.png#lightbox)
23
23
24
24
### Observability open source components
25
25
@@ -37,7 +37,7 @@ Elasticsearch, Fluentd, and Kibana (EFK) provide a distributed logging system us
37
37
### Architecture
38
38
The following diagram shows EFK architecture:
39
39
40
-
[:::image type="content" source="media/concept-observability-analytics/elasticsearch-fluentd-kibana-architecture.png" alt-text="Diagram of text boxes showing the Elasticsearch, Fluentd, and Kibana (EFK) distributed logging system used to troubleshoot microservices in Azure Operator 5G Core.":::](media/concept-observability-analytics/elasticsearch-fluentd-kibana-architecture-expanded.png#lightbox)
40
+
[:::image type="content" source="media/concept-observability-analytics/elasticsearch-fluentd-kibana-architecture.png" alt-text="Diagram of text boxes showing the Elasticsearch, Fluentd, and Kibana (EFK) distributed logging system used to troubleshoot microservices in Azure Operator 5G Core.":::](media/concept-observability-analytics/elasticsearch-fluentd-kibana-architecture.png#lightbox)
41
41
42
42
> [!NOTE]
43
43
> Sections of the following linked content is available only to customers with a current Affirmed Networks support agreement. To access the content, you must have Affirmed Networks login credentials. If you need assistance, please speak to the Affirmed Networks Support Team.
@@ -123,7 +123,7 @@ Grafana provides dashboards to visualize the collected data.
123
123
124
124
The following diagram shows how the different components of the metrics framework interact with each other.
125
125
126
-
[:::image type="content" source="media/concept-observability-analytics/network-functions.png" alt-text="Diagram of text boxes showing interaction between metrics frameworks components in Azure Operator 5G Core.":::](media/concept-observability-analytics/network-functions-expanded.png#lightbox)
126
+
[:::image type="content" source="media/concept-observability-analytics/network-functions.png" alt-text="Diagram of text boxes showing interaction between metrics frameworks components in Azure Operator 5G Core.":::](media/concept-observability-analytics/network-functions.png#lightbox)
127
127
128
128
The core components of the metrics framework are:
129
129
@@ -199,7 +199,7 @@ IstioHTTPRequestLatencyTooHigh: Requests are taking more than the <configured
199
199
200
200
Azure Operator 5G Core uses the OpenTelemetry Protocol (OTLP) in Jaeger tracing. OTLP replaces the Jaeger agent in fed-paas-helpers. Azure Operator 5G Core deploys the fed-otel_collector federation. The OpenTelemetry (OTEL) Collector runs as part of the fed-otel_collector namespace:
201
201
202
-
[:::image type="content" source="media/concept-observability-analytics/jaeger-components.png" alt-text="Diagram of text boxes showing Jaeger tracing and OpenTelemetry Protocol components in Azure Operator 5G Core.":::](media/concept-observability-analytics/jaeger-components-expanded.png#lightbox)
202
+
[:::image type="content" source="media/concept-observability-analytics/jaeger-components.png" alt-text="Diagram of text boxes showing Jaeger tracing and OpenTelemetry Protocol components in Azure Operator 5G Core.":::](media/concept-observability-analytics/jaeger-components.png#lightbox)
Copy file name to clipboardExpand all lines: articles/operator-5g-core/overview-product.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -14,7 +14,7 @@ ms.date: 04/12/2024
14
14
15
15
Azure Operator 5G Core Preview is a carrier-grade, Any-G, hybrid mobile packet core with fully integrated network functions that run both on-premises and in-cloud. Service providers can deploy resilient networks with high performance and at high capacity while maintaining low latency. Azure Operator 5G Core is ideal for Tier 1 consumer networks, mobile network operators (MNO), virtual network operators (MVNOs), enterprises, IoT, fixed wireless access (FWA), and satellite network operators (SNOs).
16
16
17
-
[:::image type="content" source="media/overview-product/architecture-5g-core.png" alt-text="Diagram of text boxes showing the components that comprise Azure Operator 5G Core.":::](media/overview-product/architecture-5g-core-expanded.png#lightbox)
17
+
[:::image type="content" source="media/overview-product/architecture-5g-core.png" alt-text="Diagram of text boxes showing the components that comprise Azure Operator 5G Core.":::](media/overview-product/architecture-5g-core.png#lightbox)
18
18
19
19
The power of Azure's global footprint ensures global coverage and operating infrastructure at scale, coupled with Microsoft's Zero Trust security framework to provide secure and reliable connectivity to cloud applications.
20
20
@@ -68,7 +68,7 @@ Azure Operator 5G Core offers the following network functions:
68
68
69
69
Any-G is built on top of Azure Operator Nexus and Azure – with flexible Network Function (NF) placement based on the operator use case. Different use cases drive NF deployment topologies. Network Functions can be placed geographically closer to the users for scenarios such as consumer, low latency, and MEC or centralized for machine to machine (Internet of Things) and enterprise scenarios. Deployment is API driven regardless of the placement of the network functions.
0 commit comments