@@ -8,7 +8,7 @@ ms.subservice: text-analytics
8
8
ms.topic : include
9
9
ms.date : 02/26/2020
10
10
ms.author : aahi
11
- ms.reviewer : tasharm, assafi
11
+ ms.reviewer : tasharm, assafi, sumeh
12
12
---
13
13
14
14
<a name =" HOLTop " ></a >
@@ -34,7 +34,7 @@ Add the following text analytics dependency to your project. This version of the
34
34
<dependency >
35
35
<groupId >com.azure</groupId >
36
36
<artifactId >azure-ai-textanalytics</artifactId >
37
- <version >1.0.0-beta.2 </version >
37
+ <version >1.0.0-beta.3 </version >
38
38
</dependency >
39
39
</dependencies >
40
40
```
@@ -118,25 +118,25 @@ static void sentimentAnalysisExample(TextAnalyticsClient client)
118
118
System . out. printf(
119
119
" Recognized document sentiment: %s, positive score: %.2f, neutral score: %.2f, negative score: %.2f.%n" ,
120
120
documentSentiment. getSentiment(),
121
- documentSentiment. getSentimentScores (). getPositive(),
122
- documentSentiment. getSentimentScores (). getNeutral(),
123
- documentSentiment. getSentimentScores (). getNegative());
121
+ documentSentiment. getConfidenceScores (). getPositive(),
122
+ documentSentiment. getConfidenceScores (). getNeutral(),
123
+ documentSentiment. getConfidenceScores (). getNegative());
124
124
125
125
for (SentenceSentiment sentenceSentiment : documentSentiment. getSentences()) {
126
126
System . out. printf(
127
127
" Recognized sentence sentiment: %s, positive score: %.2f, neutral score: %.2f, negative score: %.2f.%n" ,
128
128
sentenceSentiment. getSentiment(),
129
- sentenceSentiment. getSentimentScores (). getPositive(),
130
- sentenceSentiment. getSentimentScores (). getNeutral(),
131
- sentenceSentiment. getSentimentScores (). getNegative());
129
+ sentenceSentiment. getConfidenceScores (). getPositive(),
130
+ sentenceSentiment. getConfidenceScores (). getNeutral(),
131
+ sentenceSentiment. getConfidenceScores (). getNegative());
132
132
}
133
133
}
134
134
```
135
135
136
136
### Output
137
137
138
138
``` console
139
- Recognized document sentiment: positive, Positive Score : 1.00, Neutral Score : 0.00, Negative Score : 0.00.
139
+ Recognized document sentiment: positive, positive score : 1.00, neutral score : 0.00, negative score : 0.00.
140
140
Recognized sentence sentiment: positive, positive score: 1.00, neutral score: 0.00, negative score: 0.00.
141
141
Recognized sentence sentiment: neutral, positive score: 0.21, neutral score: 0.77, negative score: 0.02.
142
142
```
@@ -186,10 +186,10 @@ static void recognizeEntitiesExample(TextAnalyticsClient client)
186
186
" Recognized entity: %s, entity category: %s, entity sub-category: %s, offset: %s, length: %s, score: %.2f.%n" ,
187
187
entity. getText(),
188
188
entity. getCategory(),
189
- entity. getSubCategory() == null || entity. getSubCategory(). isEmpty() ? " N/A " : entity. getSubCategory(),
190
- entity. getOffset (),
191
- entity. getLength (),
192
- entity. getScore ());
189
+ entity. getSubCategory() != null && ! entity. getSubCategory(). isEmpty() ? entity. getSubCategory() : " N/A " ,
190
+ entity. getGraphemeOffset (),
191
+ entity. getGraphemeLength (),
192
+ entity. getConfidenceScore ());
193
193
}
194
194
}
195
195
```
@@ -213,21 +213,22 @@ static void recognizePIIEntitiesExample(TextAnalyticsClient client)
213
213
214
214
for (PiiEntity entity : client. recognizePiiEntities(text)) {
215
215
System . out. printf(
216
- " Recognized personal identifiable information entity: %s, entity category: %s, entity sub-category: %s, offset: %s, length: %s, score: %.2f.%n" ,
216
+ " Recognized personal identifiable information entity: %s, entity category: %s, %nentity sub-category: %s, offset: %s, length: %s, score: %.2f.%n" ,
217
217
entity. getText(),
218
218
entity. getCategory(),
219
- entity. getSubCategory() == null || entity. getSubCategory(). isEmpty() ? " N/A " : entity. getSubCategory(),
220
- entity. getOffset (),
221
- entity. getLength (),
222
- entity. getScore ());
219
+ entity. getSubCategory() != null && ! entity. getSubCategory(). isEmpty() ? entity. getSubCategory() : " N/A " ,
220
+ entity. getGraphemeOffset (),
221
+ entity. getGraphemeLength (),
222
+ entity. getConfidenceScore ());
223
223
}
224
224
}
225
225
```
226
226
227
227
### Output
228
228
229
229
``` console
230
- Recognized personal identifiable information entity: 123-12-1234, entity category: U.S. Social Security Number (SSN), entity sub-category: N/A, offset: 33, length: 11, score: 0.85.
230
+ Recognized personal identifiable information entity: 123-12-1234, entity category: U.S. Social Security Number (SSN),
231
+ entity sub-category: N/A, offset: 33, length: 11, score: 0.85.
231
232
```
232
233
233
234
## Entity linking
@@ -248,16 +249,16 @@ static void recognizeLinkedEntitiesExample(TextAnalyticsClient client)
248
249
for (LinkedEntity linkedEntity : client. recognizeLinkedEntities(text)) {
249
250
System . out. printf(" Name: %s, ID: %s, URL: %s, Data Source: %s.%n" ,
250
251
linkedEntity. getName(),
251
- linkedEntity. getId (),
252
+ linkedEntity. getDataSourceEntityId (),
252
253
linkedEntity. getUrl(),
253
254
linkedEntity. getDataSource());
254
255
System . out. printf(" Matches:%n" );
255
256
for (LinkedEntityMatch linkedEntityMatch : linkedEntity. getLinkedEntityMatches()) {
256
257
System . out. printf(" Text: %s, Offset: %s, Length: %s, Score: %.2f.%n" ,
257
258
linkedEntityMatch. getText(),
258
- linkedEntityMatch. getOffset (),
259
- linkedEntityMatch. getLength (),
260
- linkedEntityMatch. getScore ());
259
+ linkedEntityMatch. getGraphemeOffset (),
260
+ linkedEntityMatch. getGraphemeLength (),
261
+ linkedEntityMatch. getConfidenceScore ());
261
262
}
262
263
}
263
264
}
0 commit comments