Skip to content

Commit 0efa28d

Browse files
authored
Merge pull request #238666 from MicrosoftDocs/main
[ASK MODE] Manual Publish for Azure Monitor and Azure Health
2 parents 33c57be + c601019 commit 0efa28d

File tree

6 files changed

+32
-11
lines changed

6 files changed

+32
-11
lines changed

articles/azure-monitor/app/opentelemetry-configuration.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -569,8 +569,8 @@ You might want to enable the OpenTelemetry Protocol (OTLP) Exporter alongside th
569569
var builder = WebApplication.CreateBuilder(args);
570570

571571
builder.Services.AddOpenTelemetry().UseAzureMonitor();
572-
builder.Services.ConfigureOpenTelemetryTracerProvider((sp, builder) => builder.AddOtlpExporter());
573-
builder.Services.ConfigureOpenTelemetryMeterProvider((sp, builder) => builder.AddOtlpExporter());
572+
builder.Services.AddOpenTelemetry().WithTracing(builder => builder.AddOtlpExporter());
573+
builder.Services.AddOpenTelemetry().WithMetrics(builder => builder.AddOtlpExporter());
574574

575575
var app = builder.Build();
576576

articles/healthcare-apis/azure-api-for-fhir/release-notes.md

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,13 @@ Azure API for FHIR provides a fully managed deployment of the Microsoft FHIR Ser
1818
> [!Note]
1919
> Azure Health Data services is the evolved version of Azure API for FHIR enabling customers to manage FHIR, DICOM, and MedTech services with integrations into other Azure Services. To learn about Azure Health Data Services [click here](https://azure.microsoft.com/products/health-data-services/).
2020
21+
## **May 2023**
22+
23+
**SMART on FHIR : Fixed clinical scope mapping for applications**
24+
25+
This bug fix addresses issue with clinical scope not interpreted correctly for backend applications.
26+
For more details, visit [#3250](https://github.com/microsoft/fhir-server/pull/3250)
27+
2128
## **April 2023**
2229

2330
**Fixed transient issues associated with loading custom search parameters**

articles/healthcare-apis/release-notes.md

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,20 @@ ms.custom: references_regions
1919
2020
Azure Health Data Services is a set of managed API services based on open standards and frameworks for the healthcare industry. They enable you to build scalable and secure healthcare solutions by bringing protected health information (PHI) datasets together and connecting them end-to-end with tools for machine learning, analytics, and AI. This document provides details about the features and enhancements made to Azure Health Data Services including the different service types (FHIR service, DICOM service, and MedTech service) that seamlessly work with one another.
2121

22+
## May 2023
23+
#### Azure Health Data Services
24+
25+
#### FHIR Service
26+
27+
**SMART on FHIR : Fixed clinical scope mapping for applications**
28+
29+
This bug fix addresses issue with clinical scope not interpreted correctly for backend applications.
30+
For more details, visit [#3250](https://github.com/microsoft/fhir-server/pull/3250)
31+
32+
**Addresses duplicate key error when passed in request parameters and body**
33+
34+
This bug fix handles the issue, when using the POST {resourcetype}/search endpoint to query FHIR resources, the server returns 415 Unsupported Media Type. This is due to repeating a query parameter in the URL query string and the request body. This fix considers all the query parameters from request and body as input. For more details, visit [#3232](https://github.com/microsoft/fhir-server/pull/3232)
35+
2236
## April 2023
2337
#### Azure Health Data Services
2438

articles/machine-learning/how-to-image-processing-batch.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ __endpoint.yml__
6666

6767
Run the following code to create the endpoint.
6868

69-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_batch_endpoint" :::
69+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_endpoint" :::
7070

7171
# [Python](#tab/python)
7272

@@ -193,7 +193,7 @@ One the scoring script is created, it's time to create a batch deployment for it
193193

194194
Then, create the deployment with the following command:
195195

196-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_batch_deployment_set_default" :::
196+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_deployment" :::
197197

198198
# [Python](#tab/python)
199199

@@ -342,7 +342,7 @@ For testing our endpoint, we are going to use a sample of 1000 images from the o
342342

343343
To download the predictions, use the following command:
344344

345-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="download_scores" :::
345+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="download_outputs" :::
346346

347347
# [Python](#tab/python)
348348

@@ -398,7 +398,7 @@ On those cases, we may want to perform inference on the entire batch of data. Th
398398

399399
Then, create the deployment with the following command:
400400

401-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_batch_deployment_ht" :::
401+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_deployment_ht" :::
402402

403403
# [Python](#tab/python)
404404

articles/machine-learning/how-to-nlp-processing-batch.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ We are going to create a batch endpoint named `text-summarization-batch` where t
125125
126126
# [Azure CLI](#tab/cli)
127127
128-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_batch_endpoint" :::
128+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_endpoint" :::
129129
130130
# [Python](#tab/python)
131131
@@ -222,7 +222,7 @@ Let's create the deployment that will host the model:
222222

223223
Then, create the deployment with the following command:
224224

225-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_batch_deployment_set_default" :::
225+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_deployment" :::
226226

227227
# [Python](#tab/python)
228228

articles/machine-learning/how-to-use-batch-endpoints.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ A batch endpoint is an HTTPS endpoint that clients can call to trigger a batch i
9797
9898
Run the following code to create a batch deployment under the batch endpoint and set it as the default deployment.
9999
100-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_batch_endpoint" :::
100+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_endpoint" :::
101101
102102
# [Python](#tab/python)
103103
@@ -176,7 +176,7 @@ For instance, the following example downloads the output __score__ from the job.
176176

177177
# [Azure CLI](#tab/cli)
178178

179-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="download_scores" :::
179+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="download_outputs" :::
180180

181181
# [Python](#tab/python)
182182

@@ -212,7 +212,7 @@ To add a new deployment to an existing endpoint, use the code:
212212

213213
# [Azure CLI](#tab/cli)
214214

215-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_new_deployment_not_default" :::
215+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_deployment_non_default" :::
216216

217217
# [Python](#tab/python)
218218

0 commit comments

Comments
 (0)