@@ -31,7 +31,7 @@ landingContent:
31
31
url : tutorial-1st-experiment-sdk-setup.md
32
32
- text : The designer (drag & drop)
33
33
url : tutorial-designer-automobile-price-train-score.md
34
- - text : Auto ML (no code/low-code)
34
+ - text : AutoML (no code/low-code)
35
35
url : tutorial-first-experiment-automated-ml.md
36
36
- text : RStudio
37
37
url : tutorial-1st-r-experiment.md
@@ -66,8 +66,10 @@ landingContent:
66
66
url : tutorial-1st-experiment-sdk-setup.md
67
67
- text : Classify images
68
68
url : tutorial-train-models-with-aml.md
69
- - text : Predict taxi fares with Auto ML
69
+ - text : Predict taxi fares with AutoML
70
70
url : tutorial-auto-train-models.md
71
+ - text : Create Azure ML pipelines
72
+ url : tutorial-pipeline-batch-scoring-classification.md
71
73
- linkListType : how-to-guide
72
74
links :
73
75
- text : Set up your environment
@@ -80,6 +82,8 @@ landingContent:
80
82
url : how-to-train-pytorch.md
81
83
- text : Train with Keras
82
84
url : how-to-train-keras.md
85
+ - text : What are ML pipelines?
86
+ url : concept-ml-pipelines.md
83
87
84
88
# MLOps
85
89
- title : Deploy & manage models
@@ -120,13 +124,9 @@ landingContent:
120
124
linkLists :
121
125
- linkListType : tutorial
122
126
links :
123
- - text : Create ML pipelines (Python)
124
- url : tutorial-pipeline-batch-scoring-classification.md
125
- - text : Linear regression to predict prices (designer)
126
- url : tutorial-designer-automobile-price-train-score.md
127
+
127
128
- linkListType : overview
128
129
links :
129
- - text : What are ML pipelines?
130
- url : concept-ml-pipelines.md
130
+
131
131
- text : What is the designer?
132
132
url : concept-designer.md
0 commit comments