@@ -563,7 +563,9 @@ Once the run completes, you can register the model that was created from the bes
563
563
564
564
```
565
565
566
- # [Python SDK v2 (preview)](#tab/SDK-v2)
566
+ # [Python SDK](#tab/python)
567
+
568
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
567
569
568
570
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = best_run)]
569
571
@@ -583,7 +585,9 @@ Register the model either using the azureml path or your locally downloaded path
583
585
```azurecli
584
586
az ml model create -- name od- fridge- items- mlflow- model -- version 1 -- path azureml:// jobs/ $ best_run/ outputs/ artifacts/ outputs/ mlflow- model/ -- type mlflow_model -- workspace- name [YOUR_AZURE_WORKSPACE ] -- resource- group [YOUR_AZURE_RESOURCE_GROUP ] -- subscription [YOUR_AZURE_SUBSCRIPTION ]
585
587
```
586
- # [Python SDK v2 (preview)](#tab/SDK-v2)
588
+ # [Python SDK](#tab/python)
589
+
590
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
587
591
588
592
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = register_model)]
589
593
-- -
@@ -602,7 +606,9 @@ name: od-fridge-items-endpoint
602
606
auth_mode: key
603
607
```
604
608
605
- # [Python SDK v2 (preview)](#tab/SDK-v2)
609
+ # [Python SDK](#tab/python)
610
+
611
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
606
612
607
613
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = endpoint)]
608
614
@@ -620,7 +626,9 @@ Using the `MLClient` created earlier, we'll now create the Endpoint in the works
620
626
az ml online- endpoint create -- file .\create_endpoint.yml --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
621
627
```
622
628
623
- # [Python SDK v2 (preview)](#tab/SDK-v2)
629
+ # [Python SDK](#tab/python)
630
+
631
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
624
632
625
633
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = create_endpoint)]
626
634
-- -
@@ -654,7 +662,9 @@ readiness_probe:
654
662
initial_delay: 2000
655
663
```
656
664
657
- # [Python SDK v2 (preview)](#tab/SDK-v2)
665
+ # [Python SDK](#tab/python)
666
+
667
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
658
668
659
669
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = deploy)]
660
670
-- -
@@ -672,7 +682,9 @@ Using the `MLClient` created earlier, we'll now create the deployment in the wor
672
682
az ml online- deployment create -- file .\create_deployment.yml --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
673
683
```
674
684
675
- # [Python SDK v2 (preview)](#tab/SDK-v2)
685
+ # [Python SDK](#tab/python)
686
+
687
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
676
688
677
689
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = create_deploy)]
678
690
-- -
@@ -688,7 +700,9 @@ By default the current deployment is set to receive 0% traffic. you can set the
688
700
az ml online- endpoint update -- name ' od-fridge-items-endpoint' -- traffic ' od-fridge-items-mlflow-deploy=100' -- workspace- name [YOUR_AZURE_WORKSPACE ] -- resource- group [YOUR_AZURE_RESOURCE_GROUP ] -- subscription [YOUR_AZURE_SUBSCRIPTION ]
689
701
```
690
702
691
- # [Python SDK v2 (preview)](#tab/SDK-v2)
703
+ # [Python SDK](#tab/python)
704
+
705
+ [! INCLUDE [sdk v2](../ ../ includes/ machine- learning- sdk- v2.md)]
692
706
693
707
[! Notebook- python[] (~ / azureml- examples- main/ sdk/ jobs/ automl- standalone- jobs/ automl- image- object - detection- task- fridge- items/ automl- image- object - detection- task- fridge- items.ipynb? name = update_traffic)]
694
708
-- -
@@ -730,6 +744,7 @@ Review detailed code examples and use cases in the [GitHub notebook repository f
730
744
731
745
732
746
# # Code examples
747
+
733
748
# [Azure CLI](#tab/cli)
734
749
735
750
Review detailed code examples and use cases in the [azureml- examples repository for automated machine learning samples](https:// github.com/ Azure/ azureml- examples/ tree/ sdk- preview/ cli/ jobs/ automl- standalone- jobs).
0 commit comments