@@ -80,20 +80,21 @@ To generate an explanation for AutoML models, use the `MimicWrapper` class. You
80
80
81
81
- The explainer setup object
82
82
- Your workspace
83
- - A LightGBM model, which acts as a surrogate to the ` fitted_model ` automated ML model
83
+ - A surrogate model to explain the ` fitted_model ` automated ML model
84
84
85
85
The MimicWrapper also takes the ` automl_run ` object where the engineered explanations will be uploaded.
86
86
87
87
``` python
88
- from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
89
88
from azureml.explain.model.mimic_wrapper import MimicWrapper
90
89
91
90
# Initialize the Mimic Explainer
92
- explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel,
91
+ explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,
92
+ explainable_model = automl_explainer_setup_obj.surrogate_model,
93
93
init_dataset = automl_explainer_setup_obj.X_transform, run = automl_run,
94
94
features = automl_explainer_setup_obj.engineered_feature_names,
95
95
feature_maps = [automl_explainer_setup_obj.feature_map],
96
- classes = automl_explainer_setup_obj.classes)
96
+ classes = automl_explainer_setup_obj.classes,
97
+ explainer_kwargs = automl_explainer_setup_obj.surrogate_model_params)
97
98
```
98
99
99
100
### Use MimicExplainer for computing and visualizing engineered feature importance
0 commit comments