|
| 1 | +--- |
| 2 | +title: Import data |
| 3 | +titleSuffix: Azure Machine Learning |
| 4 | +description: Learn how to import your data into Azure Machine Learning designer from various data sources. |
| 5 | +services: machine-learning |
| 6 | +ms.service: machine-learning |
| 7 | +ms.subservice: core |
| 8 | +ms.topic: how-to |
| 9 | + |
| 10 | +author: peterclu |
| 11 | +ms.author: peterlu |
| 12 | +ms.date: 01/16/2020 |
| 13 | +--- |
| 14 | + |
| 15 | +# Import your data into Azure Machine Learning designer (preview) |
| 16 | + |
| 17 | +In this article, you learn how to import your own data in the designer to create custom solutions. There are two ways you can import data into the designer: |
| 18 | + |
| 19 | +* **Azure Machine Learning datasets** - Register [datasets](concept-data.md#datasets) in Azure Machine Learning to enable advanced features that help you manage your data. |
| 20 | +* **Import Data module** - Use the [Import Data](algorithm-module-reference/import-data.md) module to directly access data from online datasources. |
| 21 | + |
| 22 | +## Use Azure Machine Learning datasets |
| 23 | + |
| 24 | +We recommend that you use [datasets](concept-data.md#datasets) to import data into the designer. When you register a dataset, you can take full advantage of advanced data features like [versioning and tracking](how-to-version-track-datasets.md) and [data monitoring](how-to-monitor-datasets.md). |
| 25 | + |
| 26 | +### Register a dataset |
| 27 | + |
| 28 | +You can register existing datasets [programatically with the SDK](how-to-create-register-datasets.md#use-the-sdk) or [visually in Azure Machine Learning studio](how-to-create-register-datasets.md#use-the-ui). |
| 29 | + |
| 30 | +You can also register the output for any designer module as a dataset. |
| 31 | + |
| 32 | +1. Select the module that outputs the data you want to register. |
| 33 | + |
| 34 | +1. In the properties pane, select **Outputs** > **Register dataset**. |
| 35 | + |
| 36 | +  |
| 37 | + |
| 38 | +### Use a dataset |
| 39 | + |
| 40 | +Your registered datasets can be found in the module palette, under **Datasets** > **My Datasets**. To use a dataset, drag and drop it onto the pipeline canvas. Then, connect the output port of the dataset to other modules in the palette. |
| 41 | + |
| 42 | + |
| 43 | + |
| 44 | +Any [file dataset](how-to-create-register-datasets.md#dataset-types) registered to your machine learning workspace will appear in the module palette. You aren't limited to using datasets created in the designer. |
| 45 | + |
| 46 | +> [!NOTE] |
| 47 | +> The designer currently only supports processing [tabular datasets](how-to-create-register-datasets.md#dataset-types). If you want to use [file datasets](how-to-create-register-datasets.md#dataset-types), use the Azure Machine Learning SDK available for Python and R. |
| 48 | +
|
| 49 | +## Import data using the Import Data module |
| 50 | + |
| 51 | +While we recommend that you use datasets to import data, you can also use the [Import Data](algorithm-module-reference/import-data.md) module. The Import Data module skips registering your dataset in Azure Machine Learning and imports data directly from a [datastore](concept-data.md#datastores) or HTTP URL. |
| 52 | + |
| 53 | +For detailed information on how to use the Import Data module, see the [Import Data reference page](algorithm-module-reference/import-data.md). |
| 54 | + |
| 55 | + |
| 56 | +## Supported sources |
| 57 | + |
| 58 | +This section lists the data sources supported by the designer. Data comes into into the designer from either a datastore or from [tabular dataset](how-to-create-register-datasets.md#dataset-types). |
| 59 | + |
| 60 | +### Datastore sources |
| 61 | +For a list of supported datastore sources, see [Access data in Azure storage services](how-to-access-data.md#supported-data-storage-service-types). |
| 62 | + |
| 63 | +### Tabular dataset sources |
| 64 | + |
| 65 | +The designer supports tabular datasets created from the following sources: |
| 66 | + * Delimited files |
| 67 | + * JSON files |
| 68 | + * Parquet files |
| 69 | + * SQL queries |
| 70 | + |
| 71 | +## Data types |
| 72 | + |
| 73 | +The designer internally recognizes the following data types: |
| 74 | + |
| 75 | +* String |
| 76 | +* Integer |
| 77 | +* Decimal |
| 78 | +* Boolean |
| 79 | +* Date |
| 80 | + |
| 81 | +The designer uses an internal data type to pass data between modules. You can explicitly convert your data into data table format using the [Convert to Dataset](algorithm-module-reference/convert-to-dataset.md) module. Any module that accepts formats other than the internal format will convert the data silently before passing it to the next module. |
| 82 | + |
| 83 | +## Data constraints |
| 84 | + |
| 85 | +Modules in the designer are limited by the size of the compute target. For larger datasets, you should use a larger Azure Machine Learning compute resource. For more information on Azure Machine Learning compute, see [What are compute targets in Azure Machine Learning?](concept-compute-target.md#azure-machine-learning-compute-managed) |
| 86 | + |
| 87 | +## Next steps |
| 88 | + |
| 89 | +Learn the basics of the designer with [Tutorial: Predict automobile price with the designer](tutorial-designer-automobile-price-train-score.md). |
0 commit comments