Skip to content

Commit 1d05442

Browse files
AbeOmorLarry Franks
andauthored
Apply suggestions from code review
Co-authored-by: Larry Franks <[email protected]>
1 parent 5611d1c commit 1d05442

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

articles/machine-learning/how-to-setup-mlops-azureml.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -240,47 +240,47 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
240240

241241
1. Select `main` as a branch and choose based on your deployment method your preferred yml path.
242242
- For a terraform scenario, choose `infrastructure/pipelines/tf-ado-deploy-infra.yml`, then select **Continue**.
243-
- For a bicep scenario choose: `infrastructure/pipelines/bicep-ado-deploy-infra.yml`, then select **Continue**.
243+
- For a bicep scenario, choose `infrastructure/pipelines/bicep-ado-deploy-infra.yml`, then select **Continue**.
244244

245245
> [!CAUTION]
246-
> For this example, make sure you have the [Terraform extension for Azure DevOps](https://marketplace.visualstudio.com/items?itemName=ms-devlabs.custom-terraform-tasks) installed.
246+
> For this example, make sure the [Terraform extension for Azure DevOps](https://marketplace.visualstudio.com/items?itemName=ms-devlabs.custom-terraform-tasks) is installed.
247247

248-
1. Run the pipeline. This will take a few minutes to finish. The pipeline should create the following artifacts:
248+
1. Run the pipeline; it will take a few minutes to finish. The pipeline should create the following artifacts:
249249
* Resource Group for your Workspace including Storage Account, Container Registry, Application Insights, Keyvault and the Azure Machine Learning Workspace itself.
250-
* In the workspace there's also a compute cluster created.
250+
* In the workspace, there's also a compute cluster created.
251251
252252
1. Now the Operationalizing Loop of the MLOps Architecture is deployed.
253-
![Screenshot of ADO Infra Pipeline screen](./media/how-to-setup-mlops-azureml/ADO-infra-pipeline.png)
253+
![Screenshot of ADO Infra Pipeline screen.](./media/how-to-setup-mlops-azureml/ADO-infra-pipeline.png)
254254
255-
> [!NOTE]
256-
> The **Unable move and reuse existing repository to required location** warnings may be ignored.
255+
> [!NOTE]
256+
> The **Unable move and reuse existing repository to required location** warnings may be ignored.
257257
258258
## Deploying model training pipeline and moving to test environment
259259
260260
1. Go to ADO pipelines
261261
262-
![Screenshot of ADO Pipelines](./media/how-to-setup-mlops-azureml/ADO-pipelines.png)
262+
![Screenshot of ADO Pipelines.](./media/how-to-setup-mlops-azureml/ADO-pipelines.png)
263263
264264
1. Select **New Pipeline**.
265265
266-
![Screenshot of ADO New Pipeline button](./media/how-to-setup-mlops-azureml/ADO-new-pipeline.png)
266+
![Screenshot of ADO New Pipeline button.](./media/how-to-setup-mlops-azureml/ADO-new-pipeline.png)
267267
268268
1. Select **Azure Repos Git**.
269269
270-
![Screenshot of ADO Where's your code](./media/how-to-setup-mlops-azureml/ado-wheresyourcode.png)
270+
![Screenshot of ADO Where's your code.](./media/how-to-setup-mlops-azureml/ado-wheresyourcode.png)
271271

272272
1. Select the repository that you cloned in from the previous section `mlopsv2`
273273

274274
1. Select **Existing Azure Pipeline YAML File**
275275

276-
![Screenshot of ADO Pipeline page on configure step](./media/how-to-setup-mlops-azureml/ADO-configure-pipelines.png)
276+
![Screenshot of ADO Pipeline page on configure step.](./media/how-to-setup-mlops-azureml/ADO-configure-pipelines.png)
277277

278278
1. Select `main` as a branch and choose `/mlops/devops-pipelines/deploy-model-training-pipeline.yml`, then select **Continue**.
279279

280280
1. **Save and Run** the pipeline
281281

282282
> [!NOTE]
283-
> At this point, the infrastructure is configured and the Prototyping Loop of the MLOps Architecture is deployed. you are ready to move to our trained model to production.
283+
> At this point, the infrastructure is configured and the Prototyping Loop of the MLOps Architecture is deployed. you're ready to move to our trained model to production.
284284
285285
## Moving to production environment and deploying model
286286
@@ -308,21 +308,21 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
308308
### Deploy ML model endpoint
309309
1. Go to ADO pipelines
310310
311-
![Screenshot of ADO Pipelines](./media/how-to-setup-mlops-azureml/ADO-pipelines.png)
311+
![Screenshot of ADO Pipelines.](./media/how-to-setup-mlops-azureml/ADO-pipelines.png)
312312
313313
1. Select **New Pipeline**.
314314
315-
![Screenshot of ADO New Pipeline button for endpoint](./media/how-to-setup-mlops-azureml/ADO-new-pipeline.png)
315+
![Screenshot of ADO New Pipeline button for endpoint.](./media/how-to-setup-mlops-azureml/ADO-new-pipeline.png)
316316
317317
1. Select **Azure Repos Git**.
318318
319-
![Screenshot of ADO Where's your code](./media/how-to-setup-mlops-azureml/ado-wheresyourcode.png)
319+
![Screenshot of ADO Where's your code.](./media/how-to-setup-mlops-azureml/ado-wheresyourcode.png)
320320

321321
1. Select the repository that you cloned in from the previous section `mlopsv2`
322322

323323
1. Select **Existing Azure Pipeline YAML File**
324324

325-
![Screenshot of ADO Pipeline page on configure step](./media/how-to-setup-mlops-azureml/ADO-configure-pipelines.png)
325+
![Screenshot of ADO Pipeline page on configure step.](./media/how-to-setup-mlops-azureml/ADO-configure-pipelines.png)
326326

327327
1. Select `main` as a branch and choose:
328328

@@ -332,16 +332,16 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
332332

333333
Then select **Continue**.
334334

335-
1. Batch/Online endpoint names need to be unique, so please change **[your endpoint-name]** to another unique name and then select **Run**.
335+
1. Batch/Online endpoint names need to be unique, so change **[your endpoint-name]** to another unique name and then select **Run**.
336336

337-
![Screenshot of ADO batch deploy script](./media/how-to-setup-mlops-azureml/ADO-batch-pipeline.png)
337+
![Screenshot of ADO batch deploy script.](./media/how-to-setup-mlops-azureml/ADO-batch-pipeline.png)
338338

339339
> [!IMPORTANT]
340-
> If the run fails due to an existing online endpoint name, recreate the pipeline as described above and change **[your endpoint-name]** to **[your endpoint-name (random number)]**
340+
> If the run fails due to an existing online endpoint name, recreate the pipeline as described previously and change **[your endpoint-name]** to **[your endpoint-name (random number)]**
341341

342-
1. When the run completes, you will see:
342+
1. When the run completes, you'll see output similar to the following image:
343343
344-
![Screenshot of ADO Pipeline batch run result page](./media/how-to-setup-mlops-azureml/ADO-batch-pipeline-run.png)
344+
![Screenshot of ADO Pipeline batch run result page.](./media/how-to-setup-mlops-azureml/ADO-batch-pipeline-run.png)
345345
346346
Now the Prototyping Loop is connected to the Operationalizing Loop of the MLOps Architecture and inference has been run.
347347

0 commit comments

Comments
 (0)