Skip to content

Commit 1ef55db

Browse files
authored
Update how-to-authenticate-batch-endpoint.md
1 parent 3a0dd6a commit 1ef55db

File tree

1 file changed

+13
-9
lines changed

1 file changed

+13
-9
lines changed

articles/machine-learning/batch-inference/how-to-authenticate-batch-endpoint.md

Lines changed: 13 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ In this case, we want to execute a batch endpoint using the identity of the user
6262
1. Once authenticated, use the following command to run a batch deployment job:
6363
6464
```azurecli
65-
az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data
65+
az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci
6666
```
6767
6868
# [Azure ML SDK for Python](#tab/sdk)
@@ -85,7 +85,7 @@ In this case, we want to execute a batch endpoint using the identity of the user
8585
```python
8686
job = ml_client.batch_endpoints.invoke(
8787
endpoint_name,
88-
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
88+
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci")
8989
)
9090
```
9191
@@ -111,7 +111,7 @@ In this case, we want to execute a batch endpoint using a service principal alre
111111
1. Once authenticated, use the following command to run a batch deployment job:
112112
113113
```azurecli
114-
az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data
114+
az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/
115115
```
116116
117117
# [Azure ML SDK for Python](#tab/sdk)
@@ -139,7 +139,7 @@ In this case, we want to execute a batch endpoint using a service principal alre
139139
```python
140140
job = ml_client.batch_endpoints.invoke(
141141
endpoint_name,
142-
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
142+
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci")
143143
)
144144
```
145145
@@ -153,7 +153,7 @@ You can use the REST API of Azure Machine Learning to start a batch endpoints jo
153153
154154
```http
155155
POST /{TENANT_ID}/oauth2/token HTTP/1.1
156-
Host: https://login.microsoftonline.com
156+
Host: login.microsoftonline.com
157157
```
158158
159159
__Body__:
@@ -183,7 +183,7 @@ You can use the REST API of Azure Machine Learning to start a batch endpoints jo
183183
"InputData": {
184184
"mnistinput": {
185185
"JobInputType" : "UriFolder",
186-
"Uri": "https://pipelinedata.blob.core.windows.net/sampledata/mnist"
186+
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci"
187187
}
188188
}
189189
}
@@ -198,13 +198,17 @@ You can use managed identities to invoke batch endpoint and deployments. Please
198198
199199
# [Azure ML CLI](#tab/cli)
200200
201-
On resources configured for managed identities for Azure resources, you can sign in using the managed identity. Signing in with the resource's identity is done through the `--identity` flag.
201+
On resources configured for managed identities for Azure resources, you can sign in using the managed identity. Signing in with the resource's identity is done through the `--identity` flag. For more details see [Sign in with Azure CLI](/cli/azure/authenticate-azure-cli).
202202
203203
```bash
204204
az login --identity
205205
```
206206

207-
For more details see [Sign in with Azure CLI](/cli/azure/authenticate-azure-cli).
207+
Once authenticated, use the following command to run a batch deployment job:
208+
209+
```azurecli
210+
az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci
211+
```
208212

209213
# [Azure ML SDK for Python](#tab/sdk)
210214

@@ -227,7 +231,7 @@ Once authenticated, use the following command to run a batch deployment job:
227231
```python
228232
job = ml_client.batch_endpoints.invoke(
229233
endpoint_name,
230-
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
234+
input=Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci")
231235
)
232236
```
233237

0 commit comments

Comments
 (0)