Skip to content

Commit 235593e

Browse files
author
Gopal K. Vashishtha
committed
updating pytorch version ubuntu
1 parent 2e9baef commit 235593e

File tree

2 files changed

+147
-2
lines changed

2 files changed

+147
-2
lines changed
Lines changed: 145 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,145 @@
1+
---
2+
title: Deep Learning & AI frameworks
3+
titleSuffix: Azure Data Science Virtual Machine
4+
description: Available deep learning frameworks and tools on Azure Data Science Virtual Machine.
5+
keywords: data science tools, data science virtual machine, tools for data science, linux data science
6+
services: machine-learning
7+
ms.service: machine-learning
8+
ms.subservice: data-science-vm
9+
10+
author: gvashishtha
11+
ms.author: gopalv
12+
ms.topic: conceptual
13+
ms.date: 10/1/2019
14+
---
15+
16+
# Deep learning and AI frameworks for the Azure Data Science VM
17+
Deep learning frameworks on the DSVM are listed below.
18+
19+
## [Caffe](https://github.com/BVLC/caffe)
20+
21+
| | |
22+
| ------------- | ------------- |
23+
| Version(s) supported | |
24+
| Supported DSVM editions | Linux (Ubuntu) |
25+
| How is it configured / installed on the DSVM? | Caffe is installed in `/opt/caffe`. Samples are in `/opt/caffe/examples`.|
26+
| How to run it | use X2Go to sign in to your VM, and then start a new terminal and enter the following:<br/>`cd /opt/caffe/examples`<br/>`source activate root`<br/>`jupyter notebook`<br/><br/>A new browser window opens with sample notebooks. Binaries are installed in /opt/caffe/build/install/bin.<br/><br/>Installed version of Caffe requires Python 2.7 and won't work with Python 3.5, which is activated by default. To switch to Python 2.7, run `source activate root` to switch to Anaconda environment.|
27+
28+
## [Caffe2](https://github.com/caffe2/caffe2)
29+
30+
| | |
31+
| ------------- | ------------- |
32+
| Version(s) supported | |
33+
| Supported DSVM editions | Linux (Ubuntu) |
34+
| How is it configured / installed on the DSVM? | Caffe2 is installed in the [Python 2.7 (root) conda environment. |
35+
| How to run it | Terminal: Start Python, and import Caffe2. <br/> * JupyterHub: [Connect to JupyterHub](dsvm-ubuntu-intro.md#how-to-access-the-ubuntu-data-science-virtual-machine), and then go to the Caffe2 directory to find sample notebooks. Some notebooks require the Caffe2 root to be set in the Python code; enter /opt/caffe2. |
36+
37+
## [Chainer](https://chainer.org/)
38+
39+
| | |
40+
| ------------- | ------------- |
41+
| Version(s) supported | 5.2 |
42+
| Supported DSVM editions | Linux (Ubuntu) |
43+
| How is it configured / installed on the DSVM? | Chainer is installed in Python 3.5. |
44+
| How to run it | Terminal: Activate the Python 3.5 environment, run `python`, and then `import chainer`. <br/> * JupyterHub: [Connect to JupyterHub](dsvm-ubuntu-intro.md#how-to-access-the-ubuntu-data-science-virtual-machine), and then go to the Chainer directory to find sample notebooks.|
45+
46+
## [CUDA, cuDNN, NVIDIA Driver](https://developer.nvidia.com/cuda-toolkit)
47+
48+
| | |
49+
| ------------- | ------------- |
50+
| Version(s) supported | 10.0.130|
51+
| Supported DSVM editions | Windows and Linux |
52+
| How is it configured / installed on the DSVM? |_nvidia-smi_ is available on the system path. |
53+
| How to run it | Open a command prompt (on Windows) or a terminal (on Linux), and then run _nvidia-smi_. |
54+
55+
56+
## [Horovod](https://github.com/uber/horovod)
57+
58+
| | |
59+
| ------------- | ------------- |
60+
| Version(s) supported | 0.16.1|
61+
| Supported DSVM editions | Linux (Ubuntu) |
62+
| How is it configured / installed on the DSVM? | Horovod is installed in Python 3.5 |
63+
| How to run it | Activate the correct environment at the terminal, and then run Python. |
64+
65+
## [Keras](https://keras.io/)
66+
67+
| | |
68+
| ------------- | ------------- |
69+
| Version(s) supported | 2.2.4 |
70+
| Supported DSVM editions | Windows and Linux |
71+
| How is it configured / installed on the DSVM? | Keras is installed in Python 3.6 on Windows and in Python 3.5 in Linux |
72+
| How to run it | Activate the correct environment at the terminal, and then run Python. |
73+
74+
## [Microsoft Cognitive Toolkit (CNTK)](https://docs.microsoft.com/cognitive-toolkit/)
75+
76+
| | |
77+
| ------------- | ------------- |
78+
| Version(s) supported | 2.5.1 |
79+
| Supported DSVM editions | Windows and Linux |
80+
| How is it configured / installed on the DSVM? | CNTK is installed in Python 3.6 on [Windows 2016](dsvm-languages.md#python-windows-server-2016-edition) and in Python 3.5 on [Linux](./dsvm-languages.md#python-linux-edition)) |
81+
| How to run it | Terminal: Activate the correct environment and run Python. <br/>Jupyter: Connect to [Jupyter](provision-vm.md) or [JupyterHub](dsvm-ubuntu-intro.md#how-to-access-the-ubuntu-data-science-virtual-machine), and then open the CNTK directory for samples. |
82+
83+
## [MXNet](https://mxnet.apache.org/)
84+
| | |
85+
| ------------- | ------------- |
86+
| Version(s) supported | 1.3.0 |
87+
| Supported DSVM editions | Windows and Linux |
88+
| How is it configured / installed on the DSVM? | MXNet is installed in `C:\dsvm\tools\mxnet` on Windows and `/dsvm/tools/mxnet` on Ubuntu. Python bindings are installed in Python 3.6 on [Windows 2016](dsvm-languages.md#python-windows-server-2016-edition) and in Python 3.5 on [Linux](./dsvm-languages.md#python-linux-edition)) R bindings are also included in the Ubuntu DSVM. |
89+
| How to run it | Terminal: Activate the correct conda environment, then run `import mxnet`. <br/>Jupyter: Connect to [Jupyter](provision-vm.md#access-the-dsvm) or [JupyterHub](dsvm-ubuntu-intro.md#how-to-access-the-ubuntu-data-science-virtual-machine), and then open the `mxnet` directory for samples. |
90+
91+
## [MXNet Model Server](https://github.com/awslabs/mxnet-model-server#quick-start)
92+
93+
| | |
94+
| ------------- | ------------- |
95+
| Version(s) supported | 1.0.1 |
96+
| Supported DSVM editions | Windows and Linux |
97+
| How is it configured / installed on the DSVM? | MXNet Model Server is installed in Python 3.6 on [Windows 2016](dsvm-languages.md#python-windows-server-2016-edition) and in Python 3.5 on [Linux](./dsvm-languages.md#python-linux-edition)) |
98+
| How to run it | Terminal: Run `sudo systemctl stop jupyterhub` to stop the JupyterHub service first, because both listen on the same port. Then activate the correct conda environment and run `mxnet-model-server --start --models squeezenet=https://s3.amazonaws.com/model-server/model_archive_1.0/squeezenet_v1.1.mar` |
99+
100+
## [NVidia System Management Interface (nvidia-smi)](https://developer.nvidia.com/nvidia-system-management-interface)
101+
102+
| | |
103+
| ------------- | ------------- |
104+
| Version(s) supported | |
105+
| Supported DSVM editions | Windows and Linux |
106+
| What is it for? | NVIDIA tool for querying GPU activity |
107+
| How is it configured / installed on the DSVM? | `nvidia-smi` is on the system path. |
108+
| How to run it | On a virtual machine **with GPU's**, open a command prompt (on Windows) or a terminal (on Linux), and then run `nvidia-smi`. |
109+
110+
## [PyTorch](https://pytorch.org/)
111+
112+
| | |
113+
| ------------- | ------------- |
114+
| Version(s) supported | 1.2.0 (Windows 2016, Windows 2019, Ubuntu 16.04), 1.4.0 (Ubuntu 18.04) |
115+
| Supported DSVM editions | Linu, Windows |
116+
| How is it configured / installed on the DSVM? | Installed in [Python 3.5](dsvm-languages.md#python-linux-edition). Sample Jupyter notebooks are included, and samples are in /dsvm/samples/pytorch. |
117+
| How to run it | Terminal: Activate the correct environment, and then run Python.<br/>* [JupyterHub](dsvm-ubuntu-intro.md#how-to-access-the-ubuntu-data-science-virtual-machine): Connect, and then open the PyTorch directory for samples. |
118+
119+
## [TensorFlow](https://www.tensorflow.org/)
120+
121+
| | |
122+
| ------------- | ------------- |
123+
| Version(s) supported | 1.13 |
124+
| Supported DSVM editions | Windows, Linux |
125+
| How is it configured / installed on the DSVM? | Installed in Python 3.5 on [Linux](dsvm-languages.md#python-linux-edition) and Python 3.6 on [Windows 2016](dsvm-languages.md#python-windows-server-2016-edition) |
126+
| How to run it | Terminal: Activate the correct environment, and then run Python. <br/> * Jupyter: Connect to [Jupyter](provision-vm.md) or [JupyterHub](dsvm-ubuntu-intro.md#how-to-access-the-ubuntu-data-science-virtual-machine), and then open the TensorFlow directory for samples. |
127+
128+
## [TensorFlow Serving](https://www.tensorflow.org/serving/)
129+
130+
| | |
131+
| ------------- | ------------- |
132+
| Version(s) supported | 1.12 |
133+
| Supported DSVM editions | Linux |
134+
| How is it configured / installed on the DSVM? | tensorflow_model_server is available at the terminal. |
135+
| How to run it | Samples are available [online](https://www.tensorflow.org/serving/). |
136+
137+
138+
## [Theano](https://github.com/Theano/Theano)
139+
140+
| | |
141+
| ------------- | ------------- |
142+
| Version(s) supported | 1.0.3 |
143+
| Supported DSVM editions | Linux |
144+
| How is it configured / installed on the DSVM? |Theano is installed in Python 2.7 (_root_), and in Python 3.5 (_py35_) environment. |
145+
| How to run it | Terminal: Activate the Python version you want (root or py35), run Python, and then import Theano.<br/>* Jupyter: Select the Python 2.7 or 3.5 kernel, and then import Theano. <br/>To work around a recent math kernel library (MKL) bug, you need to first set the MKL threading layer as follows:<br/><br/>`export MKL_THREADING_LAYER=GNU` |

articles/machine-learning/data-science-virtual-machine/tools-included.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ ms.subservice: data-science-vm
1010
author: lobrien
1111
ms.author: laobri
1212
ms.topic: overview
13-
ms.date: 12/31/2019
13+
ms.date: 02/03/2020
1414

1515
---
1616

@@ -124,7 +124,7 @@ The Data Science Virtual Machine comes with the most useful data-science tools p
124124
| [MXNet](https://mxnet.apache.org/) | <span class='green-check'>&#9989;</span> | <span class='green-check'>&#9989;</span></br> (1.3.0) | <span class='red-x'>&#10060;</span> | <span class='red-x'>&#10060;</span> | [MXNet on the DSVM](./dsvm-tools-deep-learning-frameworks.md#mxnet) |
125125
| [MXNet Model Server](https://github.com/awslabs/mxnet-model-server#quick-start) | <span class='green-check'>&#9989;</span> | <span class='green-check'>&#9989;</span></br> (1.0.1) | <span class='red-x'>&#10060;</span> | <span class='red-x'>&#10060;</span> | [MXNet Model Server on the DSVM](./dsvm-tools-deep-learning-frameworks.md#mxnet-model-server) |
126126
| [NVidia System Management Interface (nvidia-smi)](https://developer.nvidia.com/nvidia-system-management-interface) | <span class='green-check'>&#9989;</span> | <span class='green-check'>&#9989;</span></br> | <span class='green-check'>&#9989;</span> | <span class='green-check'>&#9989;</span> | [nvidia-smi on the DSVM](./dsvm-tools-deep-learning-frameworks.md#nvidia-system-management-interface-nvidia-smi) |
127-
| [PyTorch](https://pytorch.org) | <span class='red-x'>&#10060;</span> | <span class='green-check'>&#9989;</span></br> (1.2.0) | <span class='green-check'>&#9989;</span> | <span class='green-check'>&#9989;</span></br> | [PyTorch on the DSVM](./dsvm-tools-deep-learning-frameworks.md#pytorch) |
127+
| [PyTorch](https://pytorch.org) | <span class='red-x'>&#10060;</span> | <span class='green-check'>&#9989;</span></br> | <span class='green-check'>&#9989;</span> | <span class='green-check'>&#9989;</span></br> | [PyTorch on the DSVM](./dsvm-tools-deep-learning-frameworks.md#pytorch) |
128128
| [TensorFlow](https://www.tensorflow.org) | <span class='green-check'>&#9989;</span></br> (1.13) | <span class='green-check'>&#9989;</span></br> (1.13) | <span class='green-check'>&#9989;</span></br> | <span class='green-check'>&#9989;</span></br> | [TensorFlow on the DSVM](./dsvm-tools-deep-learning-frameworks.md#tensorflow) |
129129
| [TensorFlow Serving](https://www.tensorflow.org/tfx/guide/serving) | <span class='red-x'>&#10060;</span> | <span class='green-check'>&#9989;</span></br> (1.12.0) | <span class='red-x'>&#10060;</span> | <span class='red-x'>&#10060;</span> | [TensorFlow Serving on the DSVM](./dsvm-tools-deep-learning-frameworks.md#tensorflow-serving) |
130130
| [Theano](https://github.com/Theano/Theano) | <span class='red-x'>&#10060;</span> | <span class='green-check'>&#9989;</span></br> (1.0.3) | <span class='red-x'>&#10060;</span> | <span class='red-x'>&#10060;</span> | [Theano on the DSVM](./dsvm-tools-deep-learning-frameworks.md#theano) |

0 commit comments

Comments
 (0)