Skip to content

Commit 23a12da

Browse files
Merge pull request #272347 from fbsolo-ms1/update-data-science-virtual-machine-files
Freshness update for dsvm-samples-and-walkthroughs.md . . .
2 parents e4c04e5 + c4d0fea commit 23a12da

File tree

1 file changed

+42
-37
lines changed

1 file changed

+42
-37
lines changed

articles/machine-learning/data-science-virtual-machine/dsvm-samples-and-walkthroughs.md

Lines changed: 42 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -10,73 +10,78 @@ ms.custom: devx-track-python
1010
author: timoklimmer
1111
ms.author: tklimmer
1212
ms.topic: conceptual
13-
ms.date: 05/12/2021
13+
ms.reviewer: franksolomon
14+
ms.date: 04/16/2024
1415
---
1516

16-
1717
# Samples on Azure Data Science Virtual Machines
1818

19-
Azure Data Science Virtual Machines (DSVMs) include a comprehensive set of sample code. These samples include Jupyter notebooks and scripts in languages like Python and R.
19+
An Azure Data Science Virtual Machines (DSVM) includes a comprehensive set of sample code. These samples include Jupyter notebooks and scripts in languages like Python and R.
2020
> [!NOTE]
21-
> For more information about how to run Jupyter notebooks on your data science virtual machines, see the [Access Jupyter](#access-jupyter) section.
21+
> For more information about how to run Jupyter notebooks on your data science virtual machines, visit the [Access Jupyter](#access-jupyter) section.
2222
2323
## Prerequisites
2424

25-
In order to run these samples, you must have provisioned an [Ubuntu Data Science Virtual Machine](./dsvm-ubuntu-intro.md).
25+
To run these samples, you must have a provisioned [Ubuntu Data Science Virtual Machine](./dsvm-ubuntu-intro.md).
2626

2727
## Available samples
2828
| Samples category | Description | Locations |
2929
| ------------- | ------------- | ------------- |
30-
| Python language | Samples explain scenarios like how to connect with Azure-based cloud data stores and how to work with Azure Machine Learning. <br/> [Python language](#python-language) | <br/>`~notebooks` <br/><br/>|
31-
| Julia language | Provides a detailed description of plotting and deep learning in Julia. Also explains how to call C and Python from Julia. <br/> [Julia language](#julia-language) |<br/> Windows:<br/> `~notebooks/Julia_notebooks`<br/><br/> Linux:<br/> `~notebooks/julia`<br/><br/> |
32-
| Azure Machine Learning | Illustrates how to build machine-learning and deep-learning models with Machine Learning. Deploy models anywhere. Use automated machine learning and intelligent hyperparameter tuning. Also use model management and distributed training. <br/> [Machine Learning](#azure-machine-learning) | <br/>`~notebooks/AzureML`<br/> <br/>|
30+
| Python language | Samples that explain **how to connect with Azure-based cloud data stores** and **how to work with Azure Machine Learning scenarios**. <br/>[Python language](#python-language) | <br/>`~notebooks` <br/><br/>|
31+
| Julia language | Provides a detailed description of plotting and deep learning in Julia. Explains how to call C and Python from Julia. <br/> [Julia language](#julia-language) |<br/> Windows:<br/> `~notebooks/Julia_notebooks`<br/><br/> Linux:<br/> `~notebooks/julia`<br/><br/> |
32+
| Azure Machine Learning | Shows how to build machine-learning and deep-learning models with Machine Learning. Deploy models anywhere. Use automated machine learning and intelligent hyperparameter tuning. Use model management and distributed training. <br/> [Machine Learning](#azure-machine-learning) | <br/>`~notebooks/AzureML`<br/> <br/>|
3333
| PyTorch notebooks | Deep-learning samples that use PyTorch-based neural networks. Notebooks range from beginner to advanced scenarios. <br/> [PyTorch notebooks](#pytorch) | <br/>`~notebooks/Deep_learning_frameworks/pytorch`<br/> <br/>|
34-
| TensorFlow | A variety of neural network samples and techniques implemented by using the TensorFlow framework. <br/> [TensorFlow](#tensorflow) | <br/>`~notebooks/Deep_learning_frameworks/tensorflow`<br/><br/> |
34+
| TensorFlow | Various neural network samples and techniques implemented with the TensorFlow framework. <br/> [TensorFlow](#tensorflow) | <br/>`~notebooks/Deep_learning_frameworks/tensorflow`<br/><br/> |
3535
| H2O | Python-based samples that use H2O for real-world problem scenarios. <br/> [H2O](#h2o) | <br/>`~notebooks/h2o`<br/><br/> |
36-
| SparkML language | Samples that use features of the Apache Spark MLLib toolkit through pySpark and MMLSpark: Microsoft Machine Learning for Apache Spark on Apache Spark 2.x. <br/> [SparkML language](#sparkml) | <br/>`~notebooks/SparkML/pySpark`<br/>`~notebooks/MMLSpark`<br/><br/> |
37-
| XGBoost | Standard machine-learning samples in XGBoost for scenarios like classification and regression. <br/> [XGBoost](#xgboost) | <br/>Windows:<br/>`\dsvm\samples\xgboost\demo`<br/><br/> |
38-
39-
<br/>
36+
| SparkML language | Samples that use Apache Spark MLLib toolkit features, through pySpark and MMLSpark: Microsoft Machine Learning for Apache Spark on Apache Spark 2.x. <br/> [SparkML language](#sparkml) | <br/>`~notebooks/SparkML/pySpark`<br/>`~notebooks/MMLSpark`<br/><br/> |
37+
| XGBoost | Standard machine-learning samples in XGBoost - for example, classification and regression. <br/> [XGBoost](#xgboost) | <br/>Windows:<br/>`\dsvm\samples\xgboost\demo`<br/><br/> |
4038

41-
## Access Jupyter
39+
## Access Jupyter
4240

43-
To access Jupyter, select the **Jupyter** icon on the desktop or application menu. You also can access Jupyter on a Linux edition of a DSVM. To access remotely from a web browser, go to `https://<Full Domain Name or IP Address of the DSVM>:8000` on Ubuntu.
44-
45-
To add exceptions and make Jupyter access available over a browser, use the following guidance:
41+
To access Jupyter, select the **Jupyter** icon on the desktop or application menu. You also can access Jupyter on a Linux edition of a DSVM. For remote access from a web browser, visit `https://<Full Domain Name or IP Address of the DSVM>:8000` on Ubuntu.
4642

43+
To add exceptions, and make Jupyter access available through a browser, use this guidance:
4744

4845
![Enable Jupyter exception](./media/ubuntu-jupyter-exception.png)
4946

50-
51-
Sign in with the same password that you use to log in to the Data Science Virtual Machine.
52-
<br/>
47+
Sign in with the same password that you use for Data Science Virtual Machine logins.
5348

5449
**Jupyter home**
55-
<br/>![Jupyter home](./media/jupyter-home.png)<br/>
5650

57-
## R language
58-
<br/>![R samples](./media/r-language-samples.png)<br/>
51+
:::image type="content" source="./media/jupyter-home.png" lightbox="./media/jupyter-home.png" alt-text="Screenshot showing sample Jupyter notebooks.":::
52+
53+
## R language
54+
55+
:::image type="content" source="./media/r-language-samples.png" lightbox="./media/r-language-samples.png" alt-text="Screenshot showing R language sample notebooks.":::
5956

6057
## Python language
61-
<br/>![Python samples](./media/python-language-samples.png)<br/>
6258

63-
## Julia language
64-
<br/>![Julia samples](./media/julia-samples.png)<br/>
59+
:::image type="content" source="./media/python-language-samples.png" lightbox="./media/python-language-samples.png" alt-text="Screenshot showing Python language sample notebooks.":::
60+
61+
## Julia language
6562

66-
## Azure Machine Learning
67-
<br/>![Azure Machine Learning samples](./media/azureml-samples.png)<br/>
63+
:::image type="content" source="./media/julia-samples.png" lightbox="./media/julia-samples.png" alt-text="Screenshot showing Julia language sample notebooks.":::
64+
65+
## Azure Machine Learning
66+
67+
:::image type="content" source="./media/azureml-samples.png" lightbox="./media/azureml-samples.png" alt-text="Screenshot showing Azure Machine Learning sample notebooks.":::
6868

6969
## PyTorch
70-
<br/>![PyTorch samples](./media/pytorch-samples.png)<br/>
7170

72-
## TensorFlow
73-
<br/>![TensorFlow samples](./media/tensorflow-samples.png)<br/>
71+
:::image type="content" source="./media/pytorch-samples.png" lightbox="./media/pytorch-samples.png" alt-text="Screenshot showing PyTorch sample notebooks.":::
72+
73+
## TensorFlow
74+
75+
:::image type="content" source="./media/tensorflow-samples.png" lightbox="./media/tensorflow-samples.png" alt-text="Screenshot showing TensorFlow sample notebooks.":::
76+
77+
## H2O
78+
79+
:::image type="content" source="./media/h2o-samples.png" lightbox="./media/h2o-samples.png" alt-text="Screenshot showing H2O sample notebooks.":::
80+
81+
## SparkML
7482

75-
## H2O
76-
<br/>![H2O samples](./media/h2o-samples.png)<br/>
83+
:::image type="content" source="./media/sparkml-samples.png" lightbox="./media/sparkml-samples.png" alt-text="Screenshot showing a pySpark notebook.":::
7784

78-
## SparkML
79-
<br/>![SparkML samples](./media/sparkml-samples.png)<br/>
85+
## XGBoost
8086

81-
## XGBoost
82-
<br/>![XGBoost samples](./media/xgboost-samples.png)<br/>
87+
:::image type="content" source="./media/xgboost-samples.png" lightbox="./media/xgboost-samples.png" alt-text="Screenshot showing the XGBoost demo directory.":::

0 commit comments

Comments
 (0)