Skip to content

Commit 2432520

Browse files
committed
removed notebook reference
1 parent 8a118e7 commit 2432520

File tree

1 file changed

+2
-4
lines changed

1 file changed

+2
-4
lines changed

articles/machine-learning/how-to-deploy-and-where.md

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -542,7 +542,7 @@ input_json = {'data': [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
542542
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]]}
543543
# create a string that can be utf-8 encoded and
544544
# put in the body of the request
545-
serialized_input_json = input_json
545+
serialized_input_json = json.dumps(input_json)
546546
dataset_content = []
547547
for i in range(100):
548548
dataset_content.append(serialized_input_json)
@@ -577,7 +577,7 @@ inference_config = InferenceConfig(entry_script='path-to-score.py',
577577
environment=myenv)
578578
input_dataset = Dataset.get_by_name(workspace=ws, name='sample_request_data')
579579
profile = Model.profile(ws,
580-
'unique_name_of_profiling_job',
580+
'unique_name',
581581
[model],
582582
inference_config,
583583
input_dataset=input_dataset)
@@ -594,8 +594,6 @@ The following command demonstrates how to profile a model by using the CLI:
594594
az ml model profile -g <resource-group-name> -w <workspace-name> --inference-config-file <path-to-inf-config.json> -m <model-id> --idi <input-dataset-id> -n <unique-name>
595595
```
596596

597-
For an end to end example which shows how to use Azure Machine Learning Profiling, please see [this notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/deploy-to-cloud)
598-
599597
## Deploy to target
600598

601599
Deployment uses the inference configuration deployment configuration to deploy the models. The deployment process is similar regardless of the compute target. Deploying to AKS is slightly different because you must provide a reference to the AKS cluster.

0 commit comments

Comments
 (0)