Skip to content

Commit 2559608

Browse files
authored
Update how-to-mlflow-batch.md
1 parent fa2c67b commit 2559608

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-mlflow-batch.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -143,15 +143,15 @@ Follow these steps to deploy an MLflow model to a batch endpoint for running bat
143143

144144
1. Now it is time to create the batch endpoint and deployment. Let's start with the endpoint first. Endpoints only require a name and a description to be created. The name of the endpoint will end-up in the URI associated with your endpoint. Because of that, __batch endpoint names need to be unique within an Azure region__. For example, there can be only one batch endpoint with the name `mybatchendpoint` in `westus2`.
145145

146-
# [Azure CLI](#tab/azure-cli)
146+
# [Azure CLI](#tab/cli)
147147

148148
In this case, let's place the name of the endpoint in a variable so we can easily reference it later.
149149

150150
```azurecli
151151
ENDPOINT_NAME="heart-classifier-batch"
152152
```
153153
154-
# [Python](#tab/python)
154+
# [Python](#tab/sdk)
155155
156156
In this case, let's place the name of the endpoint in a variable so we can easily reference it later.
157157
@@ -235,7 +235,7 @@ Follow these steps to deploy an MLflow model to a batch endpoint for running bat
235235

236236
# [Azure CLI](#tab/cli)
237237

238-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/heart-classifier-mlflow/deploy-and-run.sh" ID="update_default_deployment" :::
238+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/heart-classifier-mlflow/deploy-and-run.sh" ID="update_default_deployment" :::
239239

240240
# [Python](#tab/sdk)
241241

0 commit comments

Comments
 (0)