Skip to content

Commit 25ac6d0

Browse files
committed
First draft of conversion (mostly)
1 parent f95068b commit 25ac6d0

File tree

5 files changed

+4016
-773
lines changed

5 files changed

+4016
-773
lines changed

articles/azure-functions/flex-consumption-how-to.md

Lines changed: 74 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -281,7 +281,7 @@ Azure Functions has a custom GitHub Action and Azure DevOps Task to support cont
281281
282282
### [Core Tools](#tab/core-tools)
283283
284-
[!INCLUDE [functions-publish-project-CLI-clean](../../includes/functions-publish-project-cli-clean.md)]
284+
[!INCLUDE [functions-publish-project-cli-clean](../../includes/functions-publish-project-cli-clean.md)]
285285
286286
### [Visual Studio Code](#tab/vs-code-publish)
287287
@@ -662,6 +662,79 @@ To view the list of regions that currently support Flex Consumption plans:
662662

663663
When you create an app in the [Azure portal](flex-consumption-how-to.md?tabs=azure-portal#create-a-flex-consumption-app) or by using [Visual Studio Code](flex-consumption-how-to.md?tabs=vs-code#create-a-flex-consumption-app), currently unsupported regions are filtered out of the region list.
664664

665+
## Configure monitoring
666+
667+
The following metrics are specifically available for Flex Consumption apps:
668+
669+
##### [Azure CLI](#tab/azure-cli)
670+
671+
```azurecli
672+
# First, get the resource ID of your Flex Consumption function app (required for metrics commands)
673+
ResourceId=$(az functionapp show --name <FunctionAppName> --resource-group <ResourceGroupName> --query id -o tsv)
674+
echo "Function App Resource ID: $ResourceId"
675+
676+
# Monitor Always Ready and On Demand execution counts
677+
az monitor metrics list --resource $ResourceId --metric "AlwaysReadyFunctionExecutionCount" --interval PT1H --output table
678+
az monitor metrics list --resource $ResourceId --metric "OnDemandFunctionExecutionCount" --interval PT1H --output table
679+
680+
# Monitor execution units (MB-milliseconds) in Always Ready and On Demand instances
681+
az monitor metrics list --resource $ResourceId --metric "AlwaysReadyFunctionExecutionUnits" --interval PT1H --output table
682+
az monitor metrics list --resource $ResourceId --metric "OnDemandFunctionExecutionUnits" --interval PT1H --output table
683+
684+
# Monitor Always Ready resource utilization
685+
az monitor metrics list --resource $ResourceId --metric "AlwaysReadyUnits" --interval PT1H --output table
686+
687+
# Monitor memory utilization
688+
az monitor metrics list --resource <ResourceId> --metric "AverageMemoryWorkingSet" --interval PT1H --output table
689+
az monitor metrics list --resource <ResourceId> --metric "MemoryWorkingSet" --interval PT1H --output table
690+
691+
# Monitor instance count and CPU utilization
692+
az monitor metrics list --resource <ResourceId> --metric "InstanceCount" --interval PT1H --output table
693+
az monitor metrics list --resource <ResourceId> --metric "CpuPercentage" --interval PT1H --output table
694+
```
695+
696+
> **Note**: Flex Consumption metrics are different from Linux Consumption metrics. When comparing performance before and after migration, keep in mind that you'll need to use different metrics to track similar performance characteristics.
697+
698+
##### [Azure portal](#tab/azure-portal)
699+
700+
1. **Function App Metrics**:
701+
+ Navigate to your Flex Consumption function app in Azure Portal
702+
+ Go to "Metrics" under the "Monitoring" section
703+
+ Click "Add metric" and explore the available metrics:
704+
+ **Always Ready metrics**: Always Ready Function Execution Count, Always Ready Function Execution Units, Always Ready Units
705+
+ **On Demand metrics**: On Demand Function Execution Count, On Demand Function Execution Units
706+
+ **Memory metrics**: Average Memory Working Set, Memory Working Set
707+
+ **Performance metrics**: Instance Count, Cpu Percentage
708+
+ Create custom charts combining related metrics for better visibility
709+
+ Use "Add filter" to focus on specific functions or dimensions
710+
711+
2. **Custom Monitoring Dashboards**:
712+
+ Create a dedicated dashboard for monitoring your Flex Consumption app
713+
+ Add multiple metric charts to track different aspects of performance
714+
+ Include both Always Ready and On Demand metrics for complete visibility
715+
+ Set up alerts for key metrics that exceed expected thresholds
716+
717+
3. **Application Insights Integration (Recommended)**:
718+
+ While platform metrics provide infrastructure-level insights, Application Insights gives you code-level visibility
719+
+ If not already enabled, add Application Insights to your function app
720+
+ Within Application Insights, you can:
721+
+ Track detailed execution times and dependencies
722+
+ Monitor individual function performance
723+
+ Analyze failures and exceptions
724+
+ Create custom queries to correlate platform metrics with application behavior
725+
+ Use "Performance" to analyze response times and dependencies
726+
+ Use "Failures" to identify any errors occurring after migration
727+
+ Create custom queries in "Logs" to analyze function behavior:
728+
729+
```kusto
730+
// Compare success rates by instance
731+
requests
732+
| where timestamp > ago(7d)
733+
| summarize successCount=countif(success == true), failureCount=countif(success == false) by bin(timestamp, 1h), cloud_RoleName
734+
| render timechart
735+
```
736+
---
737+
665738
## Related content
666739
667740
+ [Azure Functions Flex Consumption plan hosting](flex-consumption-plan.md)

articles/azure-functions/functions-bindings-error-pages.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ The retry policy tells the runtime to rerun a failed execution until either succ
8080
A retry policy is evaluated when a function executed by a supported trigger type raises an uncaught exception. As a best practice, you should catch all exceptions in your code and raise new exceptions for any errors that you want to result in a retry.
8181

8282
> [!IMPORTANT]
83-
> Event Hubs checkpoints aren't written until after the retry policy for the execution finishes. Because of this behavior, progress on the specific partition is paused until the current batch is done processing.
83+
> Event Hubs checkpoints aren't written until after the retry policy for the execution finishes. Because of this behavior, progress on the specific partition is paused until the current batch is done processing. For more information, see [Azure Functions reliable event processing](functions-reliable-event-processing.md).
8484
>
8585
> The version 5.x of the Event Hubs extension supports extra retry capabilities for interactions between the Functions host and the event hub. For more information, see `clientRetryOptions` in the [Event Hubs host.json reference](functions-bindings-event-hubs.md#host-json).
8686

0 commit comments

Comments
 (0)